一、直接使用插板型
例1、把9个苹果分给5个人,每人至少一个苹果,那么不同的分法一共有多少种?( )(2010年河南政法干警考试A卷第41题)
A.30 B.40 C.50 D.60
答案:D。该问题用分类计数法较复杂,但可以将9个苹果排成一行,9个苹果中间就出现8个空挡,再用,4个挡板把9个苹果分成有序的5份,每个人就依次按序分到对应的n个苹果(可能是1个﹑2个﹑3个﹑4个、5个)。即在8个空挡中插入4个挡板,由4个挡板把球分成5份,共有C84种方法。
在这道题目中,直接符合了使用插板法的2点要求:(1)每个苹果都相同;(2)每个人都至少拿到1个苹果。
二、一组多元素型
例2、某单位订阅了30份学习材料发放给3个部门,每个部门至少发放9份材料。问一共有多少种不同的发放方法?( )(2010年国家公务员考试行测第46题)
A.12 B.10 C.9 D.7
答案:B。先拿出24份材料,每个部分发8份,这时变成"6份材料发给3个部门,每个部门至少发1份",再利用插板法,在5个空中插上2个挡板:C52=10(种)发放办法。
在这道题中,显然不符合使用插板法的第二点要求:"每组中至少分得一个元素"。题目要求"每个部分至少发放9份材料",因此可以把题目稍作变形,先给每个部分发8份材料,题目就变成了"每个部分至少发1份材料",符合使用插板法的2个要求,可以使用插板法。
三、允许空组型
例3、6个相同的苹果分给3个小朋友,请问一共有多少种分配方法?( )
A.16 B.20 C.24 D.28
答案:D。先"借"给每个小朋友一个苹果,现在一共有6+3=9个苹果。我们现在将这9个苹果分给3个小朋友,为了偿还刚才"借"的苹果,要求现在分配的时候"每个小朋友至少得到1个苹果",在8个空中插上2个挡板:C82=28(种)方法。
这道题中,题目要求"6个相同的苹果分给3个小朋友",允许有空组的存在,显然不符合使用插板法的第二点要求:"每组中至少分得一个元素",因此,先"借"给每个小朋友一个苹果,之后要求每个小朋友至少分得1个苹果,再把分得的苹果中拿出一个偿还,这就使题目变形符合使用插板法的2点要求,可以使用插板法。
从上面几道题目中不难看出,元素分组问题使用插板法后能变得较为简单。而使用插板法有2个要求:①元素相同;②每组中至少分一个元素。如果题目中的要求不符合其中一项,可将题目变形,使题意符合这2个要求,再使用插板法。
推荐阅读:公务员时事政治 点击进入
行政能力测试频道为您提供公务员考试行测的答题技巧以及行测题库,点击进入行测题库
行测真题 | 行测答案 | 行测答题技巧 | 行测题库 | 模拟试题 |