数学考试特点是:学会思考而不是学会做题;但是在我们对一道题足够熟悉前,是很难产生想法的;所以在整个复习过程中,要做到:先熟悉,然后一定要经过自己的思考才能真正把这道题变成自己的,才能做到举一反三,以不变应万变。
另外同学在做题的时候容易出现两个误区,下面就让出国留学网考研网的小编来给大家说说两个误区,以及总结下正确的考研数学复习方法。
误区1、上来就动手。做过真题的同学就会发现,很多题目的设置是很有技巧的;这个技巧不是那种投机取巧,是需要你对知识点足够熟悉,需要你思考下才能想出来的。当你熟练到一定程度的时候,就会跟命题人心有灵犀一点通了。所以做题的时候一定要:一看二想三动手;
误区2、刻意去记一些巧方法。考研数学中,常老师一直认为最好的方法绝对不是投机取巧,而是自然而然的方法;比如费马引理可能不会直接考到,但是它的证明你运用的思想和思维都是考研中必须要用到的。所以必须认真掌握其证明。
那在复习中什么样的方法是正确的呢?
第一步:必记的一定要熟记
每次常老师在讲授微积分的时候,都会说这样一句话,不管怎么样,先把这四个公式记住再说:
1. 等价无穷小
2. 基本求导微分公式
3. 基本积分公式
4. 基本泰勒公式
这四个公式相当于微积分里的基本工具,是全书都需要用到的。很多同学表示没关系,用到的时候再去查,感觉那样很是消耗信心和耐心的。另外还有就是一些基本概念和定理,以高数第一章为主:
1. 数列、函数的极限定义
2. 极限的保号性定理
3. 等价无穷小、同阶、高阶、低阶无穷小的定义
4. 函数连续的定义
5. 闭区间上连续函数的定理等等
这些同样属于考研数学中基本元素,一定掌握到一定程度,不能似懂非懂。差不多记住了等。这些定义,我每个都写的不下于20遍;不是因为记不住,而是每多记一次,就会多一度理解。
第二步:掌握必考的逻辑和思维
比如求极限每年都是必考的,题型也比较固定。这就属于我们必须要掌握住的题型和方法
一般按照如下步骤进行:
1. 判断类型
2. 简单代换(无穷小代换或者倒代换)把分母变为一项
3. 拆分组合;能拆就拆,拆不了就合
4. 洛必达或者泰勒公式
还有间断点和渐近线也是每年必考的。关于间断点,我们要知道,间断点就考两类:
1.可去间断点(就是求极限)
2.无穷间断点(就是求垂直渐近线)
还要知道求渐进线的基本步骤:
1.先求垂直渐近线(找没有定义的点)
2.再求水平渐近线(分左右两侧趋近)
3.最后求斜渐近线(分左右两侧趋近)
4.切记同一侧水平渐近线和斜渐近线不能同时存在。
第三步:锻炼良好的数学心态
数学中考的全部是主流的重难点,绝没什么偏题、怪题、难题。从当年的拉式中值定理证明到今年积的求导法则证明;更加偏向基础以及学生对基础问题的掌握熟练程度。因此是否真的对主流的知识点掌握到一定程度至关重要。但是即使这样很多学生在复习过程中,也一直患得患失:万一考了怎么办。其实很简单:考了就考了,在数学中不要怕什么万一,就算真有万一,把万分之9999掌握住也足够了。
推荐阅读:
考研大纲 | 考研经验 | 考研真题 | 考研答案 | 考研院校 | 考研录取 |