出国留学网为您整理“中考数学考点:二次函数的图像及画法”,欢迎阅读参考,更多有关内容请继续关注本网站中考栏目。
中考数学考点:二次函数的图像及画法
在平面直角坐标系中作出二次函数y=x的平方的图像,可以看出,二次函数的图像是一条永无止境的抛物线。
如果所画图形准确无误,那么二次函数将是由一般式平移得到的。
二次函数y=ax^2的图像的画法
用描点法画二次函数y=ax^2的图像时,应在顶点的左、右两侧对称地选取自变量x的值,然后计算出对应的y值,这样的对应值选取越密集,描出的图像越准确。
用描点法画出二次函数y=x^2的图像,它是一条关于y轴对称的曲线,这样的曲线叫做抛物线。
因为抛物线y=x^2关于y轴对称,所以y轴是这条抛物线的对称轴,对称轴与抛物线的交点是抛物线的顶点,从图上看,抛物线y=x2的顶点是图象的最低点.因为抛物线y=x2有最低点.所以函数y=x2有最小值,它的最小值就是最低点的纵坐标。
基本图像
当a>0时,y=ax^2的图像
当a<0时,y=ax^2的图像
二次函数y=ax^2;,y=a(x-h)^2;,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:
解析式
y=ax^2;
y=ax^2+K
y=a(x-h)^2;
y=a(x-h)^2+k
y=ax^2+bx+c
顶点坐标
(0,0)
(0,K)
(h,0)
(h,k)
(-b/2a,4ac-b^2/4a)
对称轴
x=0
x=0
x=h
x=h
x=-b/2a
当h>0时,y=a(x-h)^2;的图象可由抛物线y=ax^2;向右平行移动h个单位得到,
当h<0时,则向左平行移动|h|个单位得到.
当h>0,k>0时,将抛物线y=ax^2;向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;
当h>0,k<0时,将抛物线y=ax^2;向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2-k的图象;
当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x+h)?+k的图象;
当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)?+k的图象;在向上或向下.向左或向右平移抛物线时,可以简记为“上加下减,左加右减”。
因此,研究抛物线 y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2;+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便。
推荐阅读:
中考政策 | 中考状元 | 中考饮食 | 中考备考辅导 | 中考复习资料 |