考研大纲频道为大家提供长沙理工大学2019考研大纲:601高等数学,一起来看看吧!更多考研资讯请关注我们网站的更新!
长沙理工大学2019考研大纲:601高等数学
科目代码:601 科目名称:高等数学
一、考试要求
考生应系统地理解高等数学中函数、极限和连续、一元函数微分学、一元函数积分学、向量代数与空间解析几何、多元函数微积分学、无穷级数、常微分方程的基本概念与基本理论;学会、掌握或熟练掌握上述各部分的基本方法。应注意各部分知识的结构及知识的内在联系;应具有一定的抽象思维能力、逻辑推理能力、数学运算能力、空间想象能力;能运用基本概念、基本理论和基本方法正确地推理,准确地计算;能综合运用所学知识分析并解决工程和生活中的实际问题。
二、考试内容
1、函数和极限
函数的概念及表示法,函数的有界性、单调性、周期性和奇偶性,复合函数、反函数、分段函数和隐函数,基本初等函数性质及其图形。
数列极限与函数极限的定义以及它们的性质,无穷小和无穷大的概念及其关系,无穷小的性质及无穷小的比较,极限的四则运算,极限存在的两个准则(单调有界准则和夹逼准则)两个重要极限。
函数连续的概念,函数间断点的类型,初等函数的连续性,闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理)。
2、一元函数微分学
导数和微分的概念,导数的几何意义和物理意义,函数的可导性与连续性之间的关系,平面曲线的切线和法线,基本初等函数的导数,导数和微分的四则运算,复合函数、反函数、隐函数以及参数方程所确定的函数的微分法,高阶导数的概念和求法,一阶微分形式的不变性,微分在近似计算中的应用,洛尔(Rolle)定理,拉格朗日(Lagrange)中值定理,柯西(Cauchy)中值定理,泰勒(Taylor)定理,洛必达(L’Hospital)法则,函数的极值及其求法,函数单调性,函数图形的凹凸性、拐点及渐近线,函数图形的描绘,函数最大值和最小值的求法及简单应用,弧微分,曲率的概念,曲率半径。
3、一元函数积分学
原函数和不定积分的概念,不定积分的基本性质,基本积分公式,定积分的概念和基本性质,定积分中值定理,变上限定积分定义的函数及其导数,牛顿-莱布尼茨(Newton-Leibniz)公式,不定积分和定积分的换元积、分法部积分法,有理函数、三角函数的有理式和简单无理函数的积分,广义积分的概念和计算定积分的近似计算法,定积分的应用。
4、矢量代数和空间解析几何
矢量的概念,矢量的线性运算,矢量的数量积和矢量积的概念及运算,矢量的混合积,两矢量垂直、平行的条件,两矢量的夹角,矢量的坐标表达式及其运算,单位矢量、方向数与方向余弦,曲面方程和空间曲线方程的概念,平面方程、直线方程,平面与平面、平面与直线、直线与直线的平行、垂直的条件和夹角,点到平面和点到直线的距离,球面,母线平行于坐标轴的柱面,旋转轴为坐标轴的旋转曲面的方程,常用的二次曲面方程及其图形,空间曲线的参数方程和一般方程,空间曲线在坐标面上的投影曲线方程。
5、多元函数微分学
多元函数的概念,二元函数的几何意义,二元函数的极限和连续的概念,有界闭区域上的多元连续函数的性质,多元函数偏导数和全微分的概念,全微分存在的必要条件和充分条件,全微分在近似计算中的应用,多元复合函数、隐函数的求导法,高阶偏导数,方向导数和梯度的概念及其计算,空间曲线的切线和法平面,曲面的切平面和法线, 二元函数的二阶泰勒公式,多元函数极值和条件极值的概念,多元函数极值的必要条件,二元函数极值的充分条件,极值的求法,拉格朗日乘数法,多元函数的最大值、最小值及其简单应用。
6、多元函数积分学
二重积分、三重积分的概念及性质,二重积分与三重积分的计算和应用,两类曲线积分的概念、性质及计算,两类曲线积分的关系,格林(Green)公式,平面曲线积分与路径无关的条件,已知全微分求原函数,两类曲面积分的概念、性质及计算,两类曲面积分的关系,高斯(Gauss)公式,斯托克斯(Stokes)公式,散度、旋度的概念及计算,曲线积分和曲面积分的应用。
7、无穷级数
8、常微分方程
常微分方程的概念,微分方程的解、阶、通解、初始条件和特解,变量可分离的方程,齐次方程,一阶线性方程,伯努利(Bernoulli)方程,全微分方程,可用简单的变量代换求解的某些微分方程,可降价高阶微分方程,线性微分方程解的性质及解的结构定理,二阶常系数齐次线性微分方程,高于二阶的某些常系数齐次线性微分方程,简单的二阶常系数非齐次线性微分方程,欧拉(Euler)方程,包含两个未知函数的一阶常系数线性微分方程组,微分方程的幂级数解法,微分方程(或方程组)的简单应用问题。
三、题型
试卷满分为150分,其中:填空题、选择题、简答题约10—20分,计算题、证明题、论述题约130—140分。
四、参考教材
1.《高等数学》.同济大学数学系编.高等教育出版社,2014年7月,第七版。
1.《高等数学》.张宏伟、刘文军编.高等教育出版社,2014年2月,第一版。
小编精心为您推荐:
2019年考研大纲及解析汇总 | |
1 | 2019年考研政治大纲及解析汇总 |
2 | 2019年考研英语大纲原文汇总 |
3 | 2019年考研数学大纲原文汇总 |
4 | 2019年考研专业课大纲汇总 |
考研大纲频道整理 |
考研大纲汇总 | 考研英语大纲 | 考研政治大纲 | 考研数学大纲 | 考研专业课大纲 |