一元二次不等式怎么解,解答的步骤是什么?不知道的小伙伴看过来,下面由出国留学网小编为你精心准备了“一元二次不等式的解法是什么”仅供参考,持续关注本站将可以持续获取更多的内容!
一元二次不等式的解法是什么
一元二次不等式解法有配方法、公式法、数轴穿根、一元二次函数图象进行求解4种方法。公式法可以解所有的一元二次方程,公式法不能解没有实数根的方程(也就是b²-4ac<0的方程)。
数轴穿根:用穿根法解高次不等式时,就是先把不等式一端化为零,再对另一端分解因式,并求出它的零点,把这些零点标在数轴上,再用一条光滑的曲线,从X轴的右端上方起,依次穿过这些零点,大于零的不等式的解对应这曲线在X轴上方部分的实数X的值的集合,小于零的则相反。这种方法叫做序轴穿根法,又叫“穿根法”。口诀是“从右到左,从上到下,奇穿偶不穿。”
一元二次不等式也可通过一元二次函数图象进行求解。
通过看图象可知,二次函数图象与X轴的两个交点,然后根据题中所需求"<0"或">0"而推出答案。
求一元二次不等式的解集实际上是将这个一元二次不等式的所有项移到不等式一侧并进行因式分解分类讨论求出解集。解一元二次不等式,可将一元二次方程不等式转化成二次函数的形式,求出函数与X轴的交点,将一元二次不等式,二次函数,一元二次方程联系起来,并利用图象法进行解题,使得问题简化。
拓展阅读:一元二次不等式知识点总结
1、解不等式的有关理论
(1) 若两个不等式的解集相同,则称它们是同解不等式;
(2) 一个不等式变形为另一个不等式时,若两个不等式是同解不等式,这种变形称为不等式的同解变形;
(3) 解不等式时应进行同解变形;
(4) 解不等式的结果,原则上要用集合表示.
2、高次不等式解法
尽可能进行因式分解,分解成一次因式后,再利用数轴标根法求解
(注意每个因式的最高次项的系数要求为正数)
3、分式不等式的解法
分子分母因式分解,转化为相异一次因式的积和商的形式,再利用数轴标根法求解;
4、重难点突破
1.重点:从实际情境中抽象出一元二次不等式模型;熟练掌握一元二次不等式的解法.
2.难点:理解二次函数、一元二次方程与一元二次不等式解集的关系.求解简单的分式不等式和高次不等式以及简单的含参数的不等式
3.重难点:掌握一元二次不等式的解法,利用不等式的性质解简单的简单的分式不等式和高次不等式以及简单的含参数的不等式, 会解简单的指数不等式和对数不等式.
(1)解简单的指数不等式和对数不等式关键在于通过同解变形转化为一般的不等式(组)来求解
推荐阅读: