平行四边形有几条对称轴呢?同学们清楚吗,不清楚的话,快来小编这里瞧瞧。下面是由出国留学网小编为大家整理的“平行四边形有几条对称轴,为什么”,仅供参考,欢迎大家阅读。
平行四边形有几条对称轴,为什么
平行四边形不一定有对称轴,因为若只是平行四边形,则为0条对称轴;而若是矩形,则2条;若是正方形,则4条;若是菱形,则2条等等。
平行四边形,是在同一个二维平面内,由两组平行线段组成的闭合图形。平行四边形一般用图形名称加四个顶点依次命名。平行四边形都是中心对称图形,但不一定是轴对称图形。长方形和正方形都属于平行四边行,叫特殊的平行四边形。所以,特殊的平行四边形里,长方形有两条对称轴,正方形有四条对称轴,还有菱形(四条边都相等的平行四边形)有两条对称轴。普通的平行四边形,没有对称轴。
梯形有几条对称轴
梯形:若是等腰梯形,有一条对称轴,是上下底中点所在的直线,若是一般的梯形,没有对称轴。
扇形:有一条对称轴,是圆心与弧的中点所在的直线。
五边形:若是正五边形,则有5条对称轴,否则没有
六边形:若是正六边形,则有6条对称轴,否则没有
正方形:有4条对称轴
等边三角形是中心对称图形吗
当然不是中心对称图形,因为在等边三角形上找不到一点,使等边三角形绕这一点旋转180度后与这个等边三角形自身重合.但说等边三角形是轴对称图形是正确的
拓展阅读:圆形有几条对称轴
1、圆形有无数条对称轴。
2、圆是轴对称图形(也是中心对称图形),它有无数条对称轴,任意一条经过圆心的直线都是圆的对称轴。
3、一个图形沿着一条线对折后,两边的图形完全重合,这样的图形就是对称图形,这条线就是它的对称轴,圆沿着圆中任意一条直径对折后两边的图形都可以完全重合,所以圆的对称轴只有无数条。
正三角形是什么三角形
正三角形一般指等边三角形
等边三角形(又称正三角形),为三边相等的三角形,其三个内角相等,均为60°,它是锐角三角形的一种。等边三角形也是最稳定的结构。等边三角形是特殊的等腰三角形,所以等边三角形拥有等腰三角形的一切性质。
尺规作法
第一种:可以利用尺规作图的方式画出正三角形,其作法相当简单:先用尺画出一条任意长度的线段(这条线段的长度决定等边三角形的边长),再分别以线段二端点为圆心、线段为半径画圆,二圆汇交于二点,任选一点,和原来线段的两个端点画线段,则这二条线段和原来线段即构成一正三角形。
第二种:在平面内作一条射线AC,以A为固定端点在射线AC上截取线段AB=等边三角形边长,然后保持圆规跨度分别以A,B为端在AB同侧点作弧,两弧交点D即为所求作的三角形的第三个顶点。
性质
(1)等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。
三线合一
(2)等边三角形每条边上的中线、高线和角平分线互相重合(三线合一)
(3)等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线
或角的平分线所在的直线。
(4)等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。(四心合一)
(5)等边三角形内任意一点到三边的距离之和为定值(等于其高)
(6)等边三角形拥有等腰三角形的一切性质。(因为等边三角形是特殊的等腰三角形)
判定方法
(1)三边相等的三角形是等边三角形(定义)。
(2)三个内角都相等的三角形是等边三角形。
(3)有一个内角是60度的等腰三角形是等边三角形。
(4)
两个内角为60度的三角形是等边三角形。
说明:可首先考虑判断三角形是等腰三角形。
提示:【1】三个判定定理的前提不同,判定(1)和(2)是在三角形的条件下,判定(3)是在等腰三角形的条件下。
【2】判定(3)告诉我们,在等腰三角形中,只要有一个角是60度,不论这个角是顶角还是底角,这个三角形就是等边三角形。[1]
等边三角形的性质与判定理解:
首先,明确等边三角形定义。三边相等的三角形叫做等边三角形,也称正三角形。
其次,明确等边三角形与等腰三角形的关系。等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形。
运用等边三角解题方法
在全等证明题目中往往把等边三角形作为背景图形,在解题时我们要善于运用等边三角形的特殊性来达到证明全等的目的。