等差数列是高中数学的重点之一,那么等差数列求和公式有哪些呢?快来和小编一起看看吧。下面是由出国留学网小编为大家整理的“等差数列求和公式有哪些”,仅供参考,欢迎大家阅读。
等差数列求和公式
公式法
an=a1+(n-1)d。
前n项和公式为:Sn=na1+n(n-1)d/2。
若公差d=1时:Sn=(a1+an)n/2;
若m+n=p+q则:存在am+an=ap+aq;
若m+n=2p则:am+an=2ap。
以上n均为正整数。
倒序相加法
这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个(a1+an)。
Sn =a1+ a2+ a3+...... +an。
Sn =an+ an-1+an-2...... +a1。
上下相加得Sn=(a1+an)n/2。
分组法
有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可。
例如:an=2n+n-1,可看做是2n与n-1的和;
Sn=a1+a2+...+an
=2+0+22+1+23+2+...+2n+n-1
=(2+22+...+2n)+(0+1+...+n-1)
=2(2n-1)/(2-1)+(0+n-1)n/2
=2n+1+n(n-1)/2-2
拓展阅读:数学学习复习方法
观察法
观察法,是通过观察题目中数字的变化规律及位置特点,条件与结论之间的关系,题目的结构特点及图形的特征,从而发现题目中的数量关系,把题目阶段解答出来的一种解题方法。观察要有次序,要看的仔细、真切、在观察中要动脑,要想出道理、找出规律。
假设法
当遇到一些条件少、无法下手的题目时,我们可假设一些简单好算的数量,或将运动变化的问题假设或静止特殊的问题;对条件多、无法理清头绪的题目,将其中几个不同的条件假设相同等等,这样将会冲破常规思维的禁锢,获得巧解,这也是灵活应用极端化的策略。
代数法
在解答数学问题时,用字母代替未知数,根据等量关系列出方程,从而求出结果,这种方法称为代数法。学会用代数法解题,好比掌握了解题的金钥匙。
整形结合
在非常有趣的数学学科中“数”与“形”就像一对形影不离的亲兄弟,几乎所有的数量关系或数学规律都可以用直观的示意图来反映。正如著名数学家华罗庚所言:“数缺形时少直观,形少数时难人数”,解题时如果能用到数形结合的策略分析解答,就会充分发挥“数”与“形”的互助作用,使问题非常直观、易懂、收到不解自明的效果。
逆推法
大家都知道司马光砸缸的故事,一般从正面想,将人从水缸中捞出,即人离开水,但捞人费时费力,不敢延误时间,聪明的司马光从反面想,让水离开人,太简单了——砸烂水缸。这种方法在数学上叫逆推法,也叫还原法,即从最后结果逆推,这是解决数学问题的一种方法。