15.3 乘法公式
课时安排
3课时
从容说课
学习乘法公式,是在学习整式乘法的基础上进行的,是由一般到特殊的体现,所以教学时,可以安排学生计算(a+b)(a-b)、(x-y)(x+y)、(a+b)2、(a-b)2、(x+y)2等,在学生计算的基础上引导学生导出公式,并进一步揭示公式的结构特征,使学生理解并掌握这些公式的特点,为正确运用这些公式进行计算打好基础.为了揭示公式特征,教学中要紧紧地采取对比的方式.紧扣例题与公式进行比较,让学生自己进行比较,发现公式的特征.尽管问题千变万化,以千姿百态出现,通过对比,可以发现特征不变,仍符合公式特征,从而根据公式解决问题.
运用乘法公式计算,有时需要添括号,在已学过去括号法则的基础上,本节还安排了添括号法则.它是乘法公式的进一步深化应用的工具和基础.学习它可以和去括号法则对比进行.
在对比中学,在对比中用,在对比中再进行比较,从基本类型的题目到变化多端的题目,从单一题型到复杂题型,从式中的系数、指数、符号、项数、数字等逐一对比,抓住公式、法则的实质,达到娴熟驾驭,左右逢源,才能做到运用自如的效果.
§15.3.1 平方差公式
第九课时
教学目标
(一)教学知识点
1.经历探索平方差公式的过程.
2.会推导平方差公式,并能运用公式进行简单的运算.
(二)能力训练要求
1.在探索平方差公式的过程中,培养符号感和推理能力.
2.培养学生观察、归纳、概括的能力.
(三)情感与价值观要求 在计算过程中发现规律,并能用符号表示,从而体会数学的简捷美.
教学重点
平方差公式的推导和应用.
教学难点
理解平方差公式的结构特征,灵活应用平方差公式.
教学方法
探究与讲练相结合.
通过计算发现规律,进一步探索公式的结构特征,在老师的讲解和学生的练习中让学生体会公式实质,学会灵活运用.
教具准备
投影片.
教学过程
Ⅰ.提出问题,创设情境
[师]你能用简便方法计算下列各题吗?
(1)2001×1999 (2)998×1002
[生甲]直接乘比较复杂,我考虑把它化成整百,整千的运算,从而使运算简单,2001可以写成2000+1,1999可以写成2000-1,那么2001×1999可以看成是多项式的积,根据多项式乘法法则可以很快算出.
[生乙]那么998×1002=(1000-2)(1000+2)了.
[师]很好,请同学们自己动手运算一下.
[生](1)2001×1999=(2000+1)(2000-1)
=20002-1×2000+1×2000+1×(-1)
=20002-1
=4000000-1
=3999999.
(2)998×1002=(1000-2)(1000+2)
=10002+1000×2+(-2)×1000+(-2)×2
=10002-22
=1000000-4
=1999996.
[师]2001×1999=20002-12
998×1002=10002-22
它们积的结果都是两个数的平方差,那么其他满足这个特点的运算是否也有这个规律呢?我们继续进行探索.
Ⅱ.导入新课
[师]出示投影片
计算下列多项式的积.
(1)(x+1)(x-1)
(2)(m+2)(m-2)
(3)(2x+1)(2x-1)
(4)(x+5y)(x-5y)
观察上述算式,你发现什么规律?运算出结果后,你又发现什么规律?再举两例验证你的发现.
(学生讨论,教师引导)
[生甲]上面四个算式中每个因式都是两项.
[生乙]我认为更重要的是它们都是两个数的和与差的积.例如算式(1)是x与1这两个数的和与差的积;算式(2)是m与2这两个数的和与差的积;算式(3)是2x与1这两个数的和与差的积;算式(4)是x与5y这两个数的和与差的积.
[师]这个发现很重要,请同学们动笔算一下,相信你还会有更大的发现.
[生]解:(1)(x+1)(x-1)
=x2+x-x-1=x2-12
(2)(m+2)(m-2)
=m2+2m-2m-2×2=m2-22
(3)(2x+1)(2x-1)
=(2x)2+2x-2x-1=(2x)2-12
(4)(x+5y)(x-5y)
=x2+5y•x-x•5y-(5y)2
=x2-(5y)2
[生]从刚才的运算我发现:
也就是说,两个数的和与差的积等于这两个数的平方差,这和我们前面的简便运算得出的是同一结果.
[师]能不能再举例验证你的发现?
[生]能.例如:
51×49=(50+1)(50-1)=502+50-50-1=502-12.
即(50+1)(50-1)=502-12.
(-a+b)(-a-b)=(-a)•(-a)+(-a)•(-b)+b•(-a)+b•(-b)
=(-a)2-b2=a2-b2
这同样可以验证:两个数的和与这两个数的差的积,等于这两个数的平方差.
[师]为什么会是这样的呢?
[生]因为利用多项式与多项式的乘法法则展开后,中间两项是同类项,且系数互为相反数,所以和为零,只剩下这两个数的平方差了.
[师]很好.请用一般形式表示上述规律,并对此规律进行证明.
[生]这个规律用符号表示为:
(a+b)(a-b)=a2-b2.其中a、b表示任意数,也可以表示任意的单项式、多项式.
利用多项式与多项式的乘法法则可以做如下证明:
(a+b)(a-b)=a2-ab+ab-b2=a2-b2.
[师]同学们真不简单.老师为你们感到骄傲.能不能给我们发现的规律(a+b)(a-b)=a2-b2起一个名字呢?
[生]最终结果是两个数的平方差,叫它“平方差公式”怎样样?
[师]有道理.这就是我们探究得到的“平方差公式”,请同学们分别用文字语言和符号语言叙述这个公式.
(出示投影)
两个数的和与这两个数的差的积,等于这两个数的平方差.
即:(a+b)(a-b)=a2-b2
平方差公式是多项式乘法运算中一个重要的公式,用它直接运算会很简便,但必须注意符合公式的结构特征才能应用.
在应用中体会公式特征,感受平方差公式给运算带来的方便,从而灵活运用平方差公式进行计算
(出示投影片)
例1:运用平方差公式计算:
(1)(3x+2)(3x-2)
(2)(b+2a)(2a-b)
(3)(-x+2y)(-x-2y)
例2:计算:
(1)102×98
(2)(y+2)(y-2)-(y-1)(y+5)
[师生共析]运用平方差公式时要注意公式的结构特征,学会对号入座.
在例1的(1)中可以把3x看作a,2看作b.
即:(3x+2)(3x-2)=(3x)2-22
(a+b)(a-b)=a2-b2
同样的方法可以完成(2)、(3).如果形式上不符合公式特征,可以做一些简单的转化工作,使它符合平方差公式的特征.比如(2)应先作如下转化:
(b+2a)(2a-b)=(2a+b)(2a-b).
如果转化后还不能符合公式特征,则应考虑多项式的乘法法则.
(作如上分析后,学生可以自己完成两个例题.也可以通过学生的板演进行评析达到巩固和深化的目的)
[例1]解:(1)(3x+2)(3x-2)=(3x)2-22=9x2-4.
(2)(b+2a)(2a-b)=(2a+b)(2a-b)=(2a)2-b2=4a2-b2.
(3)(-x+2y)(-x-2y)=(-x)2-(2y)2=x2-4y2.
[例2]解:(1)102×98=(100+2)(100-2)
=1002-22=10000-4=9996.
(2)(y+2)(y-2)-(y-1)(y+5)
=y2-22-(y2+5y-y-5)
=y2-4-y2-4y+5
=-4y+1.
[师]我们能不能总结一下利用平方差公式应注意什么?
[生]我觉得应注意以下几点:
(1)公式中的字母a、b可以表示数,也可以是表示数的单项式、多项式即整式.
(2)要符合公式的结构特征才能运用平方差公式.
(3)有些多项式与多项式的乘法表面上不能应用公式,但通过加法或乘法的交换律、结合律适当变形实质上能应用公式.
[生]运算的最后结果应该是最简才行.
[师]同学们总结得很好.下面请同学们完成一组闯关练习.优胜组选派一名代表做总结发言.
Ⅲ.随堂练习
出示投影片:
计算:
(1)(a+b)(-b+a)
(2)(-a-b)(a-b)
(3)(3a+2b)(3a-2b)
(4)(a5-b2)(a5+b2)
(5)(a+2b+2c)(a+2b-2c)
(6)(a-b)(a+b)(a2+b2)
解:(1)(a+b)(-b+a)=(a+b)(a-b)=a2-b2.
(2)(-a-b)(a-b)=(-b-a)(-b+a)=(-b)2-a2=b2-a2.
(3)(3a+2b)(3a-2b)=(3a)2-(2b)2=9a2-4b2.
(4)(a5-b2)(a5+b2)=(a5)2-(b2)2=a10-b4.
(5)(a+2b+2c)(a+2b-2c)=(a+2b)2-(2c)2
=(a+2b)(a+2b)-4c2
=a2+a•2b+2b•a+(2b)2-4c2
=a2+4ab+4b2-4c2
(6)(a-b)(a+b)(a2+b2)
=(a2-b2)(a2+b2)
=(a2)2-(b2)2=a4-b4.
优胜组总结发言:
这些运算都可以通过变形后利用平方差公式.其中变形的形式有:位置变形;符号变形;系数变形;指数变形;项数变形;连用公式.关键还是在于理解公式特征,学会对号入座,有整体思想.
Ⅳ.课时小结
通过本节学习我们掌握了如下知识.
(1)平方差公式
两个数的和与这两个数的差的积等于这两个数的平方差.这个公式叫做乘法的平方差公式.即(a+b)(a-b)=a2-b2.
(2)公式的结构特征
①公式的字母a、b可以表示数,也可以表示单项式、多项式;
②要符合公式的结构特征才能运用平方差公式;
③有些式子表面上不能应用公式,但通过适当变形实质上能应用公式.如:(x+y-z)(x-y-z)=[(x-z)+y][(x-z)-y]=(x-z)2-y2.
Ⅴ.课后作业
1.课本P179练习1、2.
2.课本P182~P183习题15.3─1题.
Ⅵ.活动与探究
1.计算:1234567892-123456788×123456790
2.解方程:5x+6(3x+2)(-2+3x)-54(x- )(x+ )=2.
过程:
1.看似数字很大,但观察到:123456788=123456789-1,123456790=123456789+1,所以可以用平方差公式去化简计算.
2.方程中含有多项式的乘法,而且符合平方差公式特征,可以用平方差公式去化简.
结果:
1.1234567892-123456788×123456790
=1234567892-(123456789-1)(123456789+1)
=1234567892-(1234567892-1)
=1234567892-1234567892+1
=1.
2.原方程可化为:
5x+6(3x+2)(3x-2)-54[x2-( )2]=2
∴5x+6(9x2-4)-54x2+6=2
即5x+54x2-24-54x2+6=2
移项合并同类项得5x=20
∴x=4.
板书设计
备课资料
[例1]利用平方差公式计算:
(1)(a+3)(a-3)(a2+9);
(2)(2x-1)(4x2+1)(2x+1).
分析:(1)(a+3)(a-3)适合平方差公式的形式,应先计算(a+3)(a-3);(2)中(2x-1)(2x+1)适合平方差公式的形式,应先计算(2x-1)×(2x+1)
解答:(1)原式=(a2-9)(a2+9)
=(a2)2-92=a4-81;
(2)原式=[(2x-1)(2x+1)](4x2+1)
=[(2x)2-12](4x2+1)
=(4x2-1)(4x2+1)
=(4x2)2-1=16x4-1.
方法总结:观察、发现哪两个多项式符合平方差公式的结构特征,符合公式结构特征的先算.这是这类试题的计算原则.
[例2]计算:
(1)1002-992+982-972+962-952+…+22-12;
(2)(1- )(1- )(1- )…(1- )(1- ).
分析:直接计算显然太复杂,不难发现每两个项正好是平方相减的形式.于是便考虑能否逆用平方差公式a2-b2=(a+b)(a-b)去计算.事实上,这是可行的.
解答:(1)(1002-992)+(982-972)+(962-952)+…+(22-12)
=(100+99)(100-99)+(98+97)(98-97)+…+(2+1)(2-1)
=100+99+98+97+…+2+1
=(100+1)+(99+2)+…+(51+50)
=50×101=5050;
(2)(1- )(1- )(1- )…(1- )(1- ).
=(1+ )(1- )(1+ )(1- )(1+ )(1- )…(1+ )(1- )(1+ )(1- )
= × × × × × ×…× × × ×
= × = .
方法总结:逆用平方差公式产生了很好的效果。相信你也会运用.
中考政策 | 中考状元 | 中考饮食 | 中考备考辅导 | 中考复习资料 |