出国留学网推荐更多专题:“分数化成小数教学设计”。
以下是编辑花时间整理的《分数化成小数的教学设计》,相信您能从本文找到帮助。怎样的老师造就了怎样的学生,教师的教案准备是教师的工作之一。教案是要自己来写的因为课还是要自己来上。
分数化成小数的教学设计 篇1
百分数化成分数、小数
【教学内容】
教科书第7~8页例1,第9页课堂活动及练习二的第1,2题。
【教学目标】
1.使学生掌握百分数化分数、小数的方法,感受数学知识间的联系和区别。
2.让学生经历百分数化分数、小数的过程,培养学生抽象概括的能力。
3.能应用百分数化分数、小数的知识解决问题,培养学生的应用意识和实践能力。
【教学重点】
探究、发现百分数化成分数、小数的方法。
【教学准备】
教具:多媒体课件或挂图两张。
【教学过程】
一、联系生活,引出新课
9月,主城各区空气质量良好率如下:
北碚区:100%渝北区:100%巴南区:83.9%
九龙坡区:83.9%南岸区83.9%经开区:80.6%
高新区:77.4%江北区:74.1%渝中区:70.9%
大渡口区:70.9%沙坪坝区:67.7%
教师:同学们,看到上面的信息,你获得了哪些数学信息?又能提出哪些数学问题呢?
学生独立提出问题,师生互动,了解学生所提的问题。
学生1:9月份九龙坡区空气质量是良的有多少天?
学生2:
教师:如何解决这个问题呢?
学生大胆进行猜想,教师引导学生回到已有的知识,即化成分数和小数这个知识层面上来计算。
教师:看来我们需要学习百分数与分数、小数的互化的方法。
板书课题:百分数化小数和分数。
二、自主探索,总结方法
1.出示教科书第7~8页例1
(1)学生先独立将例题中的百分数化成分数、小数,再在小组内交流自己的方法。
(2)各小组在全班交流百分数化分数、小数的方法。
(3)抽各组板书百分数化分数、小数的过程。
2.讨论:怎样把百分数化成小数、分数
学生在小组讨论后全班交流,再教师小结。
教师抓住学生汇报的关键,重点引导学生在理解百分数与分数的关系的基础上来转化百分数,即:直接把百分数改写成分母为100的分数,再通过约分得到最简分数。
如:17%=17/100(直接改写)40%=40/100=2/5(约成最简分数)
百分数化成小数,直接去掉百分号,并将小数点向左移动两位。如46%=0.46。
三、练习运用,巩固升华
1.三人活动,对口令(课堂活动第1题)
三个同学一组,对口令,一人说百分数,另一名同学说分数,第三位同学说明这样做的理由。(要求学生每个同学说两个后要互换角色)。
2.画一画
完成教科书上的课堂活动第2题。
画好后说一说你是怎样画的,为什么要那样画?(引导学生把百分数化成分数,再涂画)
3.完成练习二的第1,2题
4.解决生活中的实际问题
(1)选择引入新课时提出的问题。
(2)根据同学们收集的生活中的百分数算一算各种成分的具体数量。(比如:某种水稻的包装上标着发芽率是98%,根据标注的粒数算一算这包种子大约可以发多少棵芽?)
四、反思课堂,互动总结
请学生独立反思这堂课的学习过程,总结一下自己有哪些收获,还有哪些问题和不足?
分数化成小数的教学设计 篇2
分数、小数化成百分数
【教学内容】
教科书第8页例2及练习二第3~7题。
【教学目标】
1.使学生掌握分数、小数化成百分数的方法。
2.让学生经历分数、小数化百分数的过程,培养学生抽象概括的能力。
3.能应用分数、小数化百分数的知识解决问题,培养学生的应用意识和实践能力。
【教学重点】
分数、小数化成百分数的方法和规律。
【教学准备】
收集的情境资料,图片,投影一台。
【教学过程】
一、创设情境,引入课题
教师:同学们,在日常生活中医生常常给病人推荐有益于病情好转的食品,纤维素是适合IBS患者食用的健康食品,常见的1kg食品含纤维素大约如下:麦麸:0.31kg;麦片:2/25kg;燕麦片:3/42kg;豆类:0.15kg;辣椒:2/5kg;坚果:0.14kg。
教师:看了这些你们觉得应该推荐什么食品呢?
让学生猜测,说出自己的看法。
学生:这些数不好比较。
教师:怎么办呢?如果我们把这些数都化成百分数就便于比较了。
板书课题:分数、小数化百分数
二、合作探究,归纳方法
(1)根据学生的回答,分小组进行讨论,探索比较的方法。学生可能会有以下几种方法:
①全部化成小数进行比较。
②全部化成分数进行比较。
③全部化成百分数进行比较(每种食品的含纤维素的百分率)。
根据学生的回答,教师小结前两种方法的优势和劣势,具体探究第三种方法。
(2)让学生独立尝试完成小数、分数化成百分数,并思考怎样转化成百分数。
0.31=31%2/25=8/100=8%
(3)分小组讨论小数化成百分数、分数化成百分数的方法。找出本组中最好的一种方法,并写出计算的流程。教师进行指导,对学习有困难的小组进行讲解。
(4)学生交流方法,教师根据学生的汇报强化。
对于小数化成百分数,重点强化最常用的方法即:小数点向右移动两位,然后再添上%。
对于分数化成百分数,教师重点强化:一是当分母只含质因数2,5时可以直接利用分数的基本性质将其化成百分数;二是当分数除了2,5外还有其他的质因数的分数,要先把分数化成小数,然后再化成百分数(当除不尽时应强调保留三位小数)。比如:3/420.071=7.1%。
三、练习应用,巩固提高
1.游戏:对口令
三个同学一组,对口令,一人说百分数,另一名同学说分数,第三位同学说明这样做的理由。(要求学生每个同学说两个后要互换角色)。
2.看谁填得多
0.35<()<37.6%(括号里面只能填分数)
25%>()>1/5(括号里面只能填小数)
3解决问题
解决课前出示的问题,化成百分数比较一下,确定给病人推选的食品。
四、反思小结
回顾本节课的课堂流程,反思每个流程点中的得与失,反思小数、分数化成百分数的具体方法。
分数化成小数的教学设计 篇3
一、教学内容:
小数化分数。(教材第97页例1和“做一做”,练十九第1、2、3题)
二、教学目标:
经历探索小数化成分数的过程,掌握小数化成分数的方法,并能正确地将小数化成分数;形成约分的习惯,懂得将小数化成最简分数。
三、重点、难点:
小数化成分数的方法,最后化成最简分数。
四、教具准备投影。
五、教学过程
(一)、导入新课
1、进行课前复习教师提问(1) 0.7表示()分之() , 0.09表示()分之() , 0.125表示()分之()。 (2)0.3表示( )分之( ),写作
2、老师小结:小数实际上是分母为10、100、1000的分数的另一种形式。
今天这节课我们就来学习分数、小数互化的一般方法。(板书课题)
(二)、自主探究,学习新知
1、出示例1:把一条3米长的绳子,平均分成10段,每段长多少米?
师:谁来列出算式?
生:3÷10=0.3米3÷10=3/10米
师:还是这根绳子,如果平均分成5段,每段长多少米?
生:3÷5=0.6米3÷5=3/5米(选两个代表到展示台展示自己的算法,并让他们叙述自己的算理.)
师:观察一下上面两组算式,你发现了什么?
生:0.3=3/10 0.6=3/5
师:两种不同形式结果是相等的,说明小数和分数是可以相互转化的。同学们想一想,能不能把一个小数直接化成分数呢?
生:能,因为小数表示的就是十分之几,百分之几,千分之几的数,所以可以直接化成分母是
10、100、1000的分数,再化简就行了。
2、师:请大家在练习本上,尝试把下面的小数化成分数:0.07= 0.24= 0.123=
3、学生独立解答,教师巡视。请学生到黑板板演,并讲解自己把小数化成分数的方法,师生小结如下:把小数化成分数,原来有几位小数,就在1的后面写几个0做分母,原来的小数去掉小数点做分子。
师:小数化成分数,需要注意什么呢?
生:需要化简的分数,要化简成最简分数,还要看清楚原来的小数是几位小数。
六、巩固知识
1、做97页上的“做一做”,集体订正时,说说你的方法。
2、练习十九第1题:先观察图,独立完成,再交流分数和小数的含义。
3、练习十九第2题:独立完成,订正交流。
4、练习十九第3题:独立连线,在交流方法,可以将小数化成分数和下面的分数比较,也可以把分数化成小数和上面的小数比较。
七、畅谈收获知识小结
谁来说一说你今天这节课都学习了哪些知识?你最大的收获是什么?
八、课后延伸
师:在我们的日常生活中,经常会遇到这样的问题:“小红和小明进行登山比赛,从山下到山顶,小红用了0.8小时,小明用了3/4小时,哪位同学登得快?”
要解决这个问题,你有什么好办法?
生1:把小数化成分数,再比较。
生2:把分数化成小数,再比较。
师:大家的想法都很好,要想比较两个人的速度,需要把这两个数统一成一类数,要么都是小数,要么都是分数,这样才能便于比较,下节课我们继续学习分数、小数互化的一般方法。
板书设计:小数化成分数
3÷10=0.3米3÷10=3/10米3÷5=0.6米3÷5=3/5米0.3=3/10 0.6=3/5
分数化成小数的教学设计 篇4
教材分析:
在进行分数和小数的大小比较以及分数、小数的混合运算中,常常要把分数化成小数,或者要把小数化成分数。所以,使学生理解和掌握分数和小树互化的方法,不仅可以沟通分数和小数的联系,深刻理解分数、小数的意义,而且还为学习分数、小数的混合运算打下基础。
教学内容:
教材第97页例1,做一做。
教学目的:
知识和技能:使学生理解和掌握分数与小数的关系,初步掌握小数化分数的方法。
情感价值:
知道事物之间可能相互地转化以及存在着普遍联系。从而知道努力学习改变自己。
教学重点:
小数化分数的方法。
教学难点:
小数化分数的方法。
教具学具:
多媒体课件。
教学方法:
三疑三探
教学过程:
一、设疑自探
(一)准备练习
1、0.8的计数单位是()它里面有()个
这样的单位。
2、用十分之几、百分之几、千分之几?.读出下面各小数0.46读作()0.035读作()
(二)揭示课题
情景导入:你能比较吗?
小红和小明进行登山比赛,从山下到山顶,小红用了0.8小时,
小明用了3/5小时,哪个同学登得快?
谈话导入:
你能比较吗?学生要么瞎猜要么无从回答,瞎猜时建议学生在数什么困难?(时间一个是小数一个分数无法比较)哦!不要灰心,学习了今天的知识,这个问题就迎刃而解了。这就是我们今天要学习的
小数化分数(板书)
(三)让学生根据课题质疑
教师:同学们,看到课题你想知道哪些知识呢?或者说你想了解哪些知识呢?来!说一说。(教师对学生提出的问题进行评价、规范、整理后说明:为了更好的学习本节新知识,老师根据同学们提出的问题,结合书本97页相关内容,归纳、整理、补充成为下面的自探提示,只要同学们能根据自探提示,认真探究相信你能弄明白刚才提出的问题。)现在开始自探用时5分钟。
(四)出示自探提示,组织学生自探课件出示自探提示
自探提示:
1、把一条长3米长的绳子平均分成10段,每段长多少米?(分别用小数和分数表示结果)如果平均分成5段呢?通过做你发现了分数和小数能够转化吗?
2、填一填:0.07= 7/() 0.24= 24/( )=( )/( )0.123=( )/( )
3、把0.13化分数时,因为0.13是()位小数,所以就在1后面写()个0作(),把0.13去掉小数点作()。
4、根据填一填2填空3试着说说把小数化成分数的方法。
5、小数化成分数时要注意些什么?
二、解疑合探
1、检查自探效果。(重点提问学困生,回答不完整由中等生补充,再由优等生评价,中等生不能解决的问题,组织学生进行讨论。)3÷10 = 0.3(米) 3÷10 =(米) 3÷ 5 = 0.6(米) 3÷ 5 = (米)结论:0.3=3/10 0.6=3/5
2、填一填:
0.07= 7/(100)0.24=24/(100)=(6)/(25) 0.123=( 123)/(1000 )在学生填空的过程中要求学生说出填写的根据是什么?(小数的意义:小数表示的就是十分之几、百分之几、千分之几的数??所以可以直接写成分母是10、100、1000??的分数,再化简。)0.24做题过程可以让学生通过演板检查学生探究的`效果和是否能注意约分,化成最简分数。让学生进行评价坚持学困生展示、中等生补充、中、优等生评价。
3、把0.13化分数时,因为0.13是(两)位小数,所以就在1后面写(两)个0作(分母),把0.13去掉小数点作(分子)。引导学生把具体的数字变成几来说一说如:0.13说成:小数。两位就是几
4、根据填一填2及填空3试着说说把小数化成分数的方法。
在合探该题时坚持让学生自己先总结、补充,不能总结完整时可以让学生进行小组讨论,不要直接出示答案。在学生充分总结、归纳的前提下出示小数化成分数的方法:小数化分数,先把小数写成分数,原来有几位小数,就在1的后面写几个0作分母,原来的小数去掉小数点作分子。化成的分数,能约分的,要约成最简分数。让学生齐读一遍并记忆记忆)
5、小数化成分数时要注意些什么?小数化成分数时,如果所得的分数能够约分就要约成最简分数。
三、质疑再探
1、学生质疑。教师:对于本节学习的知识,你还有什么不明白的地方,或者通过学习你又产生了什么新的疑问,请大胆地说出来让大家帮你解决,好吗?
2、解决学生提出的问题。(先由其他学生释疑,学生解决不了的,可根据情况或组织学生讨论或教师释疑。)
四、运用拓展
(一)学生自编习题。
自编题:请同学们根据本节所学的知识,编一道习题,考考你的同桌。
(二)根据学生自编题的练习情况,有选择的出示下面习题供学生练习。
一、完成课本97页“做一做”。直接写在书上04 0.05 0.37 0.45 0.013
二、下面的小数化为分数是否正确
0.5=5/10()7/10=0.7()0.65=100/65()11/10000=0.111()
3、把下面的小数和与它相等的分数用线连起来0.6 3/25 0.1241/50 3.2531/4 0.823/5 4动脑筋把0.a(a为1-9之间的数字)化成分数,不用约分就是一个最简分数,这样的小数有多少个?答案(有4个分别是1/10 3/10 7/10 9/10)
(三)全课总结:
1、学生谈收获。
教师:通过本节课的学习,你有什么收获?
2、教师归纳总结。
学生充分发表意见后,教师再强调总结,引导学生对学习内容进行归纳整理,形成系统的认识。
五、板书设计
小数化分数:
例1 3 ÷10=0.3(米)3 ÷ 5=0.6(米)同一结果的两种
不同的表示方式:
3 ÷10=3/10(米)3 ÷ 5=3/5(米)
所以0.3=3/10 0.6=3/5方法:先把小数写成分数,原来有几位小数,就在1的后面写几个0作分母,原来的小数去掉小数点作分子。
注意:化成的分数,能约分的,要约成最简分数。
教后反思:xxx
分数化成小数的教学设计 篇5
最简分数可以化成有限小数的规律
教学内容:九年义务教育六年制小学数学实验课本第十册91-92页《分数化成有限小数的规律》
教学目标:
1、理解掌握最简分数能否化成有限小数的规律,并能运用这一规律正确地判断一个分数能否化成有限小数;
2、让学生充分经历猜想验证探索再验证的过程,使学生初步感受科学研究的一般方法,训练学生思维的严谨性;
3、在猜想探索的过程中,培养学生的猜想、观察、分析、概括及表达能力和小组合作精神。
教学重点:让学生充分经历猜想探索的过程,使他们得出分数能否化成有限小数的规律。
教学难点:探究、理解一个分数能否化成有限小数。
教具学具:多媒体 课件
教学过程:
一、提出问题
1、说出下列各数各有哪些不同的质因数?
10 35 12 8 15 21 40 22 125
2、分数化成小数,一般用什么方法?
3、提出问题。
(1)、动手操作
同学们,我们已经学习了分数化小数的方法。看这里有许多分数。媒体出示分数:
1/2、1/3、2/5、5/6、5/8、2/9、7/10、9/14、8/15、4/25、3/40、7/30
媒体出示要求:(同桌合作)
把分数化成小数(借助计算器)
根据计算的结果分类。
(2)、反馈。
谁愿意来说一说通过计算,你们把这些分数分为几类?
又是怎样分的?
在学生回答后,媒体出示分得的结果。
能化成有限小数 不能化成有限小数
1/2 2/5 5/8 1/3 5/6 2/9
7/10 4/25 3/40 9/14 8/15 7/30
左边这些分数能化成有限小数,而右边这些小数却不能化成有限小数。那么你能否一眼就看出怎么样的分数能化成有限小数,怎么样的分数不能化成有限小数呢?
这节课我们就来研究能化成有限小数的分数的规律。
(板书课题:能化成有限小数的分数的规律)
二、大胆猜想:
这两个部分的分数有什么相同的地方?有什么不同的地方?
提出问题:仔细观察这些分数,你觉得一个分数能否化成有限小数与什么有关?
学生可能提出一下三条:
(1)一个分数能不能化成有限小数与分数的分子有关。
(2)一个分数能不能化成有限小数与分数的分母有关。
(3)一个分数能不能化成有限小数与分数的分子、分母都有关。
三、探索规律:
第一次探索:
1、提出问题:有的同学认为一个分数能不能化成有限小数与分子有关。你们怎样认为?
2、反馈:你们怎样认为?
学生举例说明:1/2和1/3、2/5和2/9、5/8和5/6这三组分数每一组中分子相同,但是有的能化成有限小数,有的不能化成有限小数,所以一个分数能不能化成有限小数与分子无关。
根据学生回答:媒体闪动一下分数1/2和1/3、2/5和2/9、5/8和5/6,
小结:我们可以从1/2和1/3、2/5和2/9、5/8和5/6看出:一个分数能不能化成有限小数与分子无关。
那么我提出的第三条:与分子分母都有关,正确吗?
第二次探索:
1、提出问题:有的同学认为一个分数能不能化成有限小数与分母有关。那能化成有限小数的分数的分母有什么特征?
2、小组讨论。
学生在小组讨论中可能出现以下几种情况:
(1)分母个位是0的分数都能化成有限小数。
(2)分母是分子倍数的分数能化成有限小数。
(3)分母是2和5的倍数的分数一定能化成有限小数。
(4)能化成有限小数的分数分母中只含有质因数2和5。
3、在学生小组讨论时,教师巡视并参与,引导学生运用举例的方法进行推理。
(1)7/30分母个位是0的分数不能化成有限小数。
(2)有的同学认为:分母是2或5的倍数的分数能化成有限小数。
这个想法对吗?为什么?
学生举例说明:
5/8、7/10、4/25、3/40分母都是2或5的倍数能化成有限小数;
5/6、9/14、8/15、7/30分母都是2或5的倍数不能化成有限小数。
得出结论:分母是2或5的倍数的分数一定能化成有限小数是不正确的。
(3)刚才有的同学还认为:能化成有限小数的分数分母中只含有质因数2和5。小组讨论:这个结论对不对?为什么?
(4)反馈。
A、讨论中引导学生把这些分数的分母分解质因数。
反馈时,根据学生回答板书显示:
5/8 222 5/6 23
7/10 25 9/14 27
4/25 55 8/15 35
3/40 2225 7/30 235
引导学生得出结论:如果分母中除了2和5以外,不含有其他质因数,这个分数就能化成有限小数。
分母中含有2和5以外的质因数,这个分数就能化成有限小数。
生自己找几个分母中只含有质因数2和5的分数,来验证自己的猜想。
出示:B、3/15中分母15分解质因数15=35,分母中有质因数3,但把他化成小数等于0.2是一个有限小数。
讨论:这和我们刚才的结论不是矛盾了吗?为什么?
通过讨论得出:刚才我们讨论的分数都是最简分数,3/15不是最简分数,但是化简后等于1/5,分母中不含有2和5以外的质因数,所以能化成有限小数。
学生回答:这个分数必须是最简分数才符合这个规律。
(5)这就是能化成有限小数的分数的规律,请大家看书,把这个规律填写完整,并轻声地读两遍。
一个( )分数,如果分母中除了( )和( )以外,不含其他的质因数,这个分数就能化成( )小数;如果分母中含有( )和( )以外的质因数,这个分数就不能化成( )小数。、
三、运用规律
1、根据刚才的发现,想一想判断一个分数能不能化成有限小数要先想什么?再想什么?同桌互相说一说。
哪位同学愿意来说一说。
学生回答:先想这个分数是不是最简分数?再想分母中是否含有2和5以外的质因数?
2、练一练
判别下面各分数,哪些能化成有限小数,哪些不能化成有限小数?为什么?
3/20 27/18 15/8 4/11 32/25 8/9 7/28 3/16 9/40
29/12 14/5
小组讨论:通过刚才的判断,你又发现了什么?
学生回答:我们只要先看它是不是最简分数,再分析分母中质因数的情况
3、判断题。
(1)一个分数,如果分母中除了2和5以外,还含有其他的质因数,这个分数就不能化成有限小数。 ( )
(2)一个最简分数,如果分母中含有质因数2和5,这个分数一定能化成有限小数。 ( )
(3)一个最简分数,如果分母有约数3,一定不能化成有限小数。( )
(4)一个最简分数,如果分母有约数7,一定不能化成有限小数。( )
第(1)(2)是错误的,要求学生说说是怎样想的?怎样说就对了。
四、课堂小结
回顾一下,这节课我们探索了什么?你有那些收获?
五、拓展延伸:
刚才我们探索得到了分数化小数时的一个规律。
其实在分数化小数时,还有许多规律。
观察下列各式,按规律填空。
1/2=0.5 (2) 1/5=0.2 (5)
3/4=0.75 (22) 4/25=0.16 (55)
7/8=0.875(222) 9/125=0.072 (555)
5/16能化成( )位小数 8/625能化成( )位小数
(2222) (5555)
先独立思考,再小组讨论。
学生汇报时说出规律:分母中只有1个质因数2(或5)化成一位小数,只有2个质因数(2或5)化成两位小数,只有4个质因数2(或5)所以能化成四位小数。
因为5/16分母中有4个质因数2,所以它能化成四位小数
因为8/125分母中有4个质因数5,所以它能化成四位小数。
用计算器算一算对吗?
学生通过计算器证明答案是正确的。
教师小结:在数学王国中还有许许多多的规律,我们只要认真学习,不断探索,一定能发现更多更有趣的规律。
分数化成小数的教学设计 篇6
设计说明
1.引导学生主动进行新旧知识的类比,利用知识间的迁移解决问题。
儿童心理学指出:类比、迁移能充分调动学生利用原有的知识经验解决新问题。因为百分数应用题的解题思路及方法与分数应用题大致相同,所以教学中要有效地利用两者之间的联系。上课伊始,通过对例题改编而成的分数应用题的分析、列式、解答,使学生进一步明确解答此类题的关键是弄清谁是单位“1”,谁和谁相比。
2.体会算法的多样化。
在解决问题的过程中,鼓励学生采用不同的计算方法,体会算法的多样化,充分培养学生用不同策略解决问题的能力。所以在教学时,鼓励学生自主解决问题,组织交流解决问题的过程,使学生明确根据数据的特点可以灵活地进行转化,再解决问题。
课前准备
教师准备PPT课件学情检测卡
教学过程
⊙复习导入
1.复习。
(1)课件出示复习题。
春蕾小学的一项调查表明,有牙病的学生人数占全校人数的。春蕾小学共有750名学生,有牙病的学生有多少人?
(2)引导学生思考。
①解答此题的关键是什么?(解答此题的关键是弄清谁是单位“1”,谁和谁相比)
②用什么方法计算?怎样列式?(用乘法计算,列式为750×)
(3)尝试解答。(指名板演,其他学生自己做)
2.导入。
师:刚才我们复习了用分数解决问题,下面我们就来学习用百分数解决问题。(板书课题)
设计意图:通过复习“求一个数的几分之几是多少”的问题,引导学生复习解答此类问题的关键及解法,为实现知识间的迁移作铺垫。
⊙学习新课
1.旧知迁移,探究新知。
(1)课件出示教材85页例2。
(2)学生尝试解题,交流计算过程。
预设
生1:求有牙病的学生有多少人,就是求750的20%是多少。题中的数量关系符合“求一个数的几分之几是多少”,所以列式为750×20%,计算时可以把百分数直接化成小数进行计算。
750×20%
=750×
=750×0.2
=150(人)
生2:我的解题思路和他相同,但是计算过程不同,我是把百分数化成了分数,然后进行约分计算的。
750×20%
=750×
=750×
=150(人)
(3)比较例2与复习题中问题的异同。(引导学生从题意、思路及计算方法等方面比较后得出结论)
①解题思路相同,都是用全校人数×对应的分率。
②计算过程不同,复习题中的问题是用整数乘分数计算的,而例2是用整数乘百分数计算的。
(4)小结。
解决百分数问题可以依照解决分数问题的方法进行。“求一个数的百分之几是多少”也用乘法计算。关键是弄清谁是单位“1”,谁和谁相比。