教案课件也是老师工作中的一部分,因此老师最好能认真写好每个教案课件。只有提前备好教案课件,这样课堂的教学效率才能有大的提升,如何写出让自己满意教案课件?根据您的需求,出国留学网小编为您搜集了一些内容:因式分解教案,欢迎阅读,希望对你有帮助!
因式分解教案 篇1
一、教材分析
(一)地位和作用
分解因式与数是分解质因数类似,是代数中一种重要的恒等变形,它是在学生学习了整式运算的基础上提出来的,是整式乘法的逆向变形。在后面的学习过程中应用广泛,如:将分式通分和约分,二次根式的计算与化简,以及解方程都将以它为基础。因此分解因式这一章在整个教材中起到了承上启下的作用。同时,在因式分解中体现了数学的众多思想,如:“化归”思想、“类比”思想、“整体”思想等。因此,因式分解的学习是数学学习的重要内容。根据《课标》的要求,本章介绍了最基本的两种分解因式的方法:提公因式法和运用公式法(平方差、完全平方公式)。因此公式法是分解因式的重要方法之一,是现阶段的学习重点
(二)学情分析:学生已经学习了乘法公式中的完全平方公式和平方差公式,在上一节课学习了提公因式法和平方差公式分解因式,初步体会了分解因式与整式乘法的互逆关系,为本节课的学习奠定了良好的基础。学生已经建立了较好的预习习惯,为本节课的难点突破提供了先决条件。
(三)教学目标
1.知识与技能使学生了解运用公式法分解因式的意义;会用公式法(直接用公式不超过两次)分解因式(指数是正整数);使学生清楚地知道提公因式法是分解因式的首先考虑的方法,再考虑用平方差公式或完全平方公式进行分解因式。
2.过程与方法经历通过整式乘法的完全平方公式逆向得出运用公式分解因式方法的过程,发展学生的逆向思维和推理能力。
3.情感与态度培养学生灵活的运用知识的能力和操积极思考的良好行为,体会因式分解在数学学科中的地位和价值。
(四)教学重难点、
1.教学重点:会运用完全平方公式和分解因式,培养学生观察、分析问题的能力。
2.教学难点:准确理解和掌握公式的结构特征,并善于运用完全平方公式分解因式。
3.易错点:分解因式不彻底。
二、学法与教法分析
1.学法分析:
①注意分解因式与整式乘法的关系,两者是互逆的。
②注意完全平方公式的特点。
2.教法分析:根据《课标》的要求,结合本班学生的知识水平,本堂课采用对比,探究,讲练结合的方法完成教学目标。在教学过程中,所选例题保证基本的运算技能,避免复杂的题型,直接用公式不超过两次。
三、教学过程分析
(一)创设情境,发现新知
1.计算:通过让学生回答完全平方公式,加深学生对公式的印象,并通过让学生观察完全平方公式而找到公式的特征(1)x2+2x+1(2)(3x+y)(3x-y)利用一组整式的乘法运算复习完全平方公式和平方差公式,为探究运用公式法分解因式打下基础。
2.你能把多项式:(x+1)2分解因式吗?学生从对比整式的乘法去探索分解因式方法,可以感受到这种互逆变形以及它们之间的联系。
(二)合作交流,探索新知
(1)用语言怎样叙述公式?(2)公式有什么结构特征?(3)公式中的字母a、b可以表示什么?引导学生观察平方差公式的结构特征,
学生在互动交流中,既形成了对知识的全面认识,又培养了观察、分析能力以及合作交流的能力。判断:下列多项式能不能运用完全平方公式分解因式?(1)x2+y2(2)x2+2xy+y2(3)x2-2xy+y2(4)x2+2xy-y2(5)-x2+2xy-y2通过这一组判断,使学生加深理解和掌握完全平方公式的结构特征,既突出了重点,也培养了学生的应用意识。
(三)例题探究,体验新知
(A)通过自学例3:分解因式(1)x2+14x+49(2)(m+n)2-6(m+n)+9引导学生得出分解因式的一般步骤,向学生渗透“化归”思想。
要让学生明确:(1)要先确定公式中的a和b;
(2)学习规范的步骤书写。
(B)例4、分解因式(1)3ax2+6axy+3ay2(2)-x2-4y2+4xy
加深对完全平方公式的理解,同时感知“整体”思想在分解因式中的应用。
(四)随堂练习,巩固新知
(A)练习:把下列多项式中,哪几个是完全平方式?请把是完全平方式的多项式因式分解(1)x2-x+1/4(2)9a2b2-3ab+1(3)1/4m2+3mn+9n2
(4)x-10x-25练习先由学生独立完成,然后通过小组交流,发现问题及时解决。学生在解决问题的过程中培养了应用意识,加强了知识落实,突出了重点。
(B)分解因式:(1)x2-12xy+36y2(2)16a4+24a2b2+9b4(3)-2xy-x2-y2(4)4-12(x-y)+9(x-y)2例3在学生预习的前提下,由学生分析每一步的理由,明确:结果要化简;分解要彻底,体会其中的整体思想。然后练习(1)(2)两个同类型的题目。学生在交流与实践中突破了难点。安排的习题题型不复杂,直接运用公式不超过两次,习题难易有梯度,满足不同层次的同学的需要。
(五)归纳小结,形成体系先通过小组讨论本节课的知识及注意问题,然后学生自由发言、互相补充,我进行修正、精炼阐述。这样,小结既梳理了知识,又点明了本节课的学习要点,同时使学生对本节知识体系也有了一个清晰的认识。最后剩余5-6分钟进行当堂检测。
(六)作业分层,全面提升:采用分层布置作业,满足不同层次的同学的需要。
因式分解教案 篇2
一、说教材
1、关于地位与作用。
今天我说课的内容是浙教版七年级数学下册第六章《因式分解》第一节课的内容。因式分解是代数式的一种重要恒等变形。。它是学习分式的基础,又在恒等变形、代数式的运算、解方程、函数中有广泛的应用,。就本节课而言,着重阐述了两个方面,一是因式分解的概念,二是与整式乘法的相互关系。它是继整式乘法的基础上来讨论因式分解概念,继而,通过探究与整式乘法的关系,来寻求因式分解的原理。这一思想实质贯穿后继学习的各种因式分解方法。通过本节课的学习,不仅使学生掌握因式分解的概念和原理,而且又为后面学习因式分解作好了充分的准备。因此,它起到了承上启下的作用。
2、关于教学目标。
根据因式分解这一节课的内容,对于掌握各种因式分解的方法,乃至整个代数教学中的地位和作用,我制定了以下教学目标:
(一)知识目标:
①理解因式分解的概念;
②掌握从整式乘法得出因式分解的方法。
(二)能力目标:
①培养分工协作及合作能力,锻炼学生的语言表达及用数学语言的能力。
②培养学生观察、分析、归纳的能力,并向学生渗透对比、类比的数学思想方法。
(三)情感目标:
①培养学生积极主动参与的意识,使学生形成自主学习、合作学习的良好的学习习惯。
②体会事物之间互相转化的辨证思想,从而初步接受对立统一观点。
3、关于教学重点与难点。
本节课理解因式分解的概念的本质属性是学习整章因式分解的关键,而学生由乘法到因式分解的变形是一个逆向思维。在前一章整式乘法的较长时间的学习,造成思维定势,学生容易产生“倒摄抑制”作用,阻碍学生新概念的形成。因此我将本课的学习重点、难点确定为:学习的重点:因式分解的概念学习的难点:认识因式分解与整式乘法的关系,并能意识到可以运用整式乘法的一系列法则来解决因式分解的各种问题。
4、关于教法与学法。
教发与学法是互相和统一的,正如新《数学课程标准》所要求的,让学生“动手实践、自主探索、合作交流”。就本节课而言,在教法上不妨利用对比教学,让学生体验因式分解概念产生的过程;利用类比教学,以概念的形成和同化相结合,促进学生对因式分解概念的理解;利用尝试教学,让学生主动暴露思维过程,及时得到信息的反馈。不管用什么教法,一节课应该不断研究学生的学习心理机制,不断优化教师本身的教学行为,自始至终对学生充满情感、创造和谐的课堂氛围,这是最重要的。
二、教学过程。
本节课,一共设以下几个环节。
第一环节,设置问题,以趣激情。
兴趣是最好的老师,可以激发情感,唤起某种动机,从而引导学生成为学习的主人。若能利用短短几分钟时间,在刚开始就激发学生的兴趣,这正是老师追求的一个目标。何况,初一学生在学习过程中,能激起他们积极地、主动地去探讨问题,这是学习成功地一个保障。所以这个环节我设置以下的问题:手工课上,老师给南韩兵同学发下一张如左图形状的纸张,要求他在恰好不浪费纸张的前提下剪拼成右图形状的长方形,作为一幅精美剪纸的衬底,请问你你能帮助南韩兵同学解决这个问题吗?你能给出数学解释吗?
(留一定的时间让学生思考、讨论,在学生感到新奇又不知所措的过程中积蓄了强烈的求知欲望。设置悬念,无疑对整章的学习也创设了良好的情绪状态。)
第二环节,以旧探新,引出课题。
因式分解的概念类同于因数分解的概念,借助于学生已有的整式乘法的基础,给学生提供一些问题背景,同时给学生留有充分探索的空间。这个环节围绕几个问题展开,在积极的状态下,用类比的方法,找到新知生长点,把数的有关知识正迁移到式,由学生自己给出因式分解的名称,引出课题,显得顺理成章。利用多媒体课件,依次出示,让学生回答。
1、计算:(1)a(a+1);(2)(a+b)(a–b);(3)(a+1)2。
在前一章已学过整式乘法,学生不难得出正确答案,
2、接着提出:把上述等式反过来看,等式是否还成立?由等式性质学生应该很快得出肯定地答案。
(1)a2+a=a(a+1);(2)a2–b2=(a+b)(a–b);(3)a2+2a+1=(a+1)2。
3、这时再请学生观察、比较以上2题两种代数式变形的例子,它们之间有什么区别和联系?给学生一定的时间思考,在小组中讨论后,得出第(1)小题是整式乘法,左边是整式的积,右边是一个多项式第(2)小题是把一个多项式化成几个整式的积的形式,左边是一个多项式,右边是几个整式的积,两者的过变形刚好相反。此时教师可马上点题,在小学里,我们已学过:2×3×7=42称为整数乘法,反之42=2×3×7称为因数分解,类似于因数分解,我们可把右边多项式转化为几个整式的积这种变形称之为什么?从而由学生自己得出本节课的课题《因式分解》。
△安排这一过程的意图是:一是复习整式的乘法,激活学生原有整式乘法的认知结构,促使新旧认知结构的联结,满足“温故而知新”的教学原理。二是为本节课目标的达成作好铺垫。通过对比教学,提高学生对因式分解的知觉水平,了解整式乘法与因式分解是互逆的关系。通过具体数的分解这一类比教学,产生正迁移,认识新概,符合学生概念形成的认知规律,在此基础上引出课题——因式分解。三也使学生在探索中增强观察、发现、归纳等能力。
第三环节,初步应用,巩固新知。
趁此时学生处在一个积极思维的状态,教师给出两个练习1。列代数式变形中,哪些是因式分解?哪些不是?(1)2m(m-n)=2m2-2mn();(2)4x2-4x+1=(2x-1)2;(3)x2-3x+1=x(x-3)+12。填空:
(1)∵3a(a+4)=3a2+12a∴3a2+12a=();
(2)∵(a+3)2=a2+6a+9∴a2+6a+9=();
(3)∵(2-a)(2+a)=4-a2∴4-a2=();
通过此练习,引导学生归纳自己对因式分解的理解:
(1)因式分解是对多项式而言的一种变形;
(2)因式分解的结果仍是几个整式的积的形式;
(3)因式分解与整式乘法正好相反。
△安排这一过程的意图是:通过尝试教学,引导学生主动探求,造求学生自主学习的积极势态,通过一定的练习,达到知觉水平上的运用,加深学生对因式分解概念的理解,从而突出本节课的重点,其中练习(2)的安排是让学生感受到因式分解是整式乘法的逆过程,由此寻求因式分解的方法,为下一个环节例题的讲解作了个铺垫,降低了本节课的难点。
△第四环节,范例教学,练习反馈。
1、例检验下列因式分解是否正确:(1)x2y-xy2=xy(x-y);(2)2x2-1=(2x+1)(2x-1);(3)x2+3x+2=(x+1)(x+2)本例的教学是本节课的一个难点,首先,给学生一定的时间思考讨论,教师适当引导学生思考能否利用因式分解与整式乘法是互逆的关系来解此题,其次,让学生大胆尝试,引导学生得出检验因式分解是否正确,只要看等式右边几个整式相乘的积与左边的多项式是否相等就可,最后教师给出完整的板书教师安排这一过程意图就是引导学生进行分析讨论,鼓励学生勤于思考,各抒己见,培养学生的逻辑思维能力和表达、交流能力。让学生在主动学习中掌握了因式分解是整式乘法的互逆的过程,以及理解利用它们之间的关系进行因式分解的这种思想,从而降低了本节课的难点。
2、这个环节的第二部分,为了进一步淡化难点,我马上让学生模仿我的解题尝试练习:课本p153第1、2题,让学生上台板书,我及时点拨讲评。
△教师安排这一过程,完全放手让学生自主进行,充分暴露学生的思维过程,展现学生生动活泼、主动求知和富有的个性,使学生真正成为学习的主体,使因式分解与整式的乘法的关系得到正强化。也分散了本节课的难点3。之后重新拿出引入中的问题,问学生现在能否解决?手工课上,老师给南韩兵同学发下一张如左图形状的纸张,要求他在恰好不浪费纸张的前提下剪拼成右图形状的长方形,作为一幅精美剪纸的衬底,请问你你能帮助南韩兵同学解决这个问题吗?你能给出数学解释吗?本题依据的是因式分解的意义,题中所给的左图的面积正好是要分解的多项式a2–b2,它的两个因式可以看作是右图这个长方形的长和宽在此重新拿出引入中的问题,目的就是让学生了解学习因式分解的必要性,感受到数学来源于生活又服务于生活,初步接受数形结合的思想。
第五环节,知识整理,归纳小结。
教师出示“想一想”:下列式子从左边到右边是因式分解吗,为什么?A。(a+3)(a-3)=a2-9B。t2-16+3t=(t+4)(t-4)+3tC。4x2+12xy+9y2=(2x+3y)(2x+3y)由学生讨论后归纳出因式分解的概念
△教师安排这一过程意图是:学生一般到临近下课,大脑处于疲劳状态,注意力开始分散。教师如果把定义及要注意的问题进行小结后直接抛给学生,只能是是似而非。通过让学生练习,在练习中归纳,点燃学生主题意识的再度爆发。同时,学生的知识学习得到了自我评价和巩固,成为本节课的最后一个亮点。
第六环节,布置作业,巩固提高。
1、书上P153页作业题A组必做,B组选做。
2、兴趣题:手工课上,老师又给同学们发了3张正方形纸片,3张长方形纸片,请你将它们拼成一个长方形,并运用面积之间的关系,将多项式2a2+3ab+b2因式分解。
教师意图:让学生巩固所学内容并进行自我检测与评价,考虑到学生基础的差异性,作业进行分层次要求。兴趣题可满足学有余力的学生的求知欲望,提高他们对因式分解的技能和技巧。三、关于教学设计本节课从日常生活中的一个小制作入手,首先给学生一个悬念,激发学生的好奇心和求知欲,接着让学生分组合作进行讨论,让学生借助表格上的直观性进行观察、讨论、发现整式乘法和因式分解的关系,引导学生动口、动手、动脑来参与知识的发生、发展、形成和运用的过程,使学生从被动思维变为主动探索,培养了学生用数学的观点、思维的方法去观察,探索和思考问题的能力。
因式分解教案 篇3
课型 复习课 教法 讲练结合
教学目标(知识、能力、教育)
1.了解分解因式的意义,会用提公因式法、 平方差公式和完全平方公式(直接用公式不超过两次)分解因式(指数是正整数).
2.通过乘法公式 , 的逆向变形,进一步发展学生观察、归纳、类比、概括等能力,发展有条理的思考及语言表达能力
教学重点 掌握用提取公因式法、公式法分解因式
教学难点 根据题目的形式和特征 恰当选择方法进行分解,以提高综合解题能力。
教学媒体 学案
教学过程
一:【 课前预习】
(一):【知识梳理】
1.分解因式:把一个多项式化成 的形式,这种变形叫做把这个多项式分解因式.
2.分解困式的方法:
⑴提公团式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.
⑵运用公式法:平方差公式: ;
完全平方公式: ;
3.分解因式的步骤:
(1)分解 因式时,首先考虑是否有公因式,如果有公因式,一定先提取公团式,然后再考虑是否能用公式法 分解.
(2)在用公式时,若是两项,可考虑用平方差公式;若是三项,可考虑用完全平方公式;若是三项以上,可先进行适当的分组,然后分解因式。
4.分解因式时常见的思维误区:
提公因式时,其公因式应找字母指数最低的,而不是以首项为准.若有一项被全部提出,括号内的项 1易漏掉.分解不彻底,如保留中括号形式,还能继续分解等
(二):【课前练习】
1.下列各组多项式中没有公因式的是( )
A.3x-2与 6x2-4x B.3(a-b)2与11(b-a)3
C.mxmy与 nynx D.aba c与 abbc
2. 下列各题中,分解因式错误的是( )
3. 列多项式能用平方差公式分解因式的是()
4. 分解因式:x2+2xy+y2-4 =_____
5. 分解因式:(1) ;
(2) ;(3) ;
(4) ;(5)以上三题用了 公式
二:【经典考题剖析】
1. 分解因式:
(1) ;(2) ;(3) ;(4)
分析:①因式分解时,无论有几项,首先考虑提取公因式。提公因式时,不仅注意数,也要 注意字母,字母可能是单项式也可能是多项式,一次提尽。
②当某项完全提出后,该项应为1
③注意 ,
④分解结果(1)不带中括号;(2)数字因数在前,字母因数在后;单项式在前,多项式在后;(3)相同因式写成幂的形式;(4 )分解结果应在指定范围内不能再分解为止;若无指定范围,一般在有理数范围内分解。
2. 分解因式:(1) ;(2) ;(3)
分析:对于二次三项齐次式,将其中一个字母看作末知数,另一个字母视为常数。首先考虑提公因式后,由余下因式的项数为3项,可考虑完全平方式或十字相乘法继续分解;如果项数为2,可考虑平方差、立方差、立方和公式。(3)题无公因式,项数为2项,可考虑平方差公式先分解开,再由项数考虑选择方法继续分解。
3. 计算:(1)
(2)
分析:(1)此题先分解因式后约分,则余下首尾两数。
(2)分解后,便有规可循,再求1到20xx的和。
4. 分解因式:(1) ;(2)
分析:对于四项或四项以上的多项式的因式分解,一般采用分组分解法,
5. (1)在实数范围内分解因式: ;
(2)已知 、 、 是△ABC的三边,且满足 ,
求证:△ABC为等边三角形。
分析:此题给出的是三边之间的关系,而要证等边三角形,则须考虑证 ,
从已知给出的等式结构看出,应构造出三个完全平方式 ,
即可得证,将原式两边同乘以2即可。略证:
即△ABC为等边三角形。
三:【课后训练】
1. 若 是一个完全平方式,那么 的值是( )
A.24 B.12 C.12 D.24
2. 把多项式 因式分解的结果是( )
A. B. C. D.
3. 如果二次三项式 可分解为 ,则 的 值为( )
A .-1 B.1 C. -2 D.2
4. 已知 可以被在60~70之间的两个整数整除,则这两个数是( )
A.61、63 B.61、65 C.61、67 D.63、65
5. 计算:19982002= , = 。
6. 若 ,那么 = 。
7. 、 满足 ,分解因式 = 。
8. 因式分解:
(1) ;(2)
(3) ;(4)
9. 观察下列等式:
想一想,等式左边各项幂的底数与右边幂的底数有何关 系?猜一猜可引出什么规律?用等式将其规律表示出来: 。
10. 已知 是△ABC的三边,且满足 ,试判断△ABC的形状。阅读下面解题过程:
解:由 得:
①
②
即 ③
△ABC为Rt△。 ④
试问:以上解题过程是否正确: ;若不正确,请指出错在哪一步?(填代号) ;错误原因是 ;本题结论应为 。
四:【课后小结】
布置作业 地纲
因式分解教案 篇4
教学目标
1、 会运用因式分解进行简单的多项式除法。
2、 会运用因式分解解简单的方程。
二、教学重点与难点教学重点:
教学重点
因式分解在多项式除法和解方程两方面的应用。
教学难点:
应用因式分解解方程涉及较多的推理过程。
三、教学过程
(一)引入新课
1、 知识回顾(1) 因式分解的几种方法: ①提取公因式法: ma+mb=m(a+b) ②应用平方差公式: = (a+b) (a—b)③应用完全平方公式:a 2ab+b =(ab) (2) 课前热身: ①分解因式:(x +4) y — 16x y
(二)师生互动,讲授新课
1、运用因式分解进行多项式除法例1 计算: (1) (2ab —8a b) (4a—b)(2)(4x —9) (3—2x)解:(1) (2ab —8a b)(4a—b) =—2ab(4a—b) (4a—b) =—2ab (2) (4x —9) (3—2x) =(2x+3)(2x—3) [—(2x—3)] =—(2x+3) =—2x—3
一个小问题 :这里的x能等于3/2吗 ?为什么?
想一想:那么(4x —9) (3—2x) 呢?练习:课本P162课内练习
合作学习
想一想:如果已知 ( )( )=0 ,那么这两个括号内应填入怎样的数或代数式子才能够满足条件呢? (让学生自己思考、相互之间讨论!)事实上,若AB=0 ,则有下面的结论:(1)A和B同时都为零,即A=0,且B=0(2)A和B中有一个为零,即A=0,或B=0
试一试:你能运用上面的结论解方程(2x+1)(3x—2)=0 吗?3、 运用因式分解解简单的方程例2 解下列方程: (1) 2x +x=0 (2) (2x—1) =(x+2) 解:x(x+1)=0 解:(2x—1) —(x+2) =0则x=0,或2x+1=0 (3x+1)(x—3)=0原方程的根是x1=0,x2= 则3x+1=0,或x—3=0 原方程的根是x1= ,x2=3注:只含有一个未知数的方程的解也叫做根,当方程的根多于一个时,常用带足标的字母表示,比如:x1 ,x2
等练习:课本P162课内练习2
做一做!对于方程:x+2=(x+2) ,你是如何解该方程的,方程左右两边能同时除以(x+2)吗?为什么?
教师总结:运用因式分解解方程的基本步骤(1)如果方程的右边是零,那么把左边分解因式,转化为解若干个一元一次方程;(2)如果方程的两边都不是零,那么应该先移项,把方程的右边化为零以后再进行解方程;遇到方程两边有公因式,同样需要先进行移项使右边化为零,切忌两边同时除以公因式!4、知识延伸解方程:(x +4) —16x =0解:将原方程左边分解因式,得 (x +4) —(4x) =0(x +4+4x)(x +4—4x)=0(x +4x+4)(x —4x+4)=0 (x+2) (x—2) =0接着继续解方程,5、 练一练 ①已知 a、b、c为三角形的三边,试判断 a —2ab+b —c 大于零?小于零?等于零?解: a —2ab+b —c =(a—b) —c =(a—b+c)(a—b—c)∵ a、b、c为三角形的三边 a+c ﹥b a﹤b+c a—b+c﹥0 a—b—c ﹤0即:(a—b+c)(a—b—c) ﹤0 ,因此 a —2ab+b —c 小于零。6、 挑战极限①已知:x=20xx,求∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6的值。解: ∵4x — 4x+3= (4x —4x+1)+2 = (2x—1) +2 0x +2x+2 = (x +2x+1)+1 = (x+1) +10 ∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6= 4x — 4x+3 —4(x +2x+2 ) +13x+6= 4x — 4x+3 —4x —8x —8+13x+6= x+1即:原式= x+1=20xx+1=20xx
(三)梳理知识,总结收获因式分解的两种应用:
(1)运用因式分解进行多项式除法
(2)运用因式分解解简单的方程
(四)布置课后作业
作业本6、42、课本P163作业题(选做)
因式分解教案 篇5
教材分析
因式分解是代数式的一种重要恒等变形。《数学课程标准》虽然降低了因式分解的特殊技巧的要求,也对因式分解常用的四种方法减少为两种,且公式法的应用中,也减少为两个公式,但丝毫没有否定因式分解的教育价值及其在代数运算中的'重要作用。本章教材是在学生学习了整式运算的基础上提出来的,事实上,它是整式乘法的逆向运用,与整式乘法运算有密切的联系。分解因式的变形不仅体现了一种“化归”的思想,而且也是解决后续—分式的化简、解方程等—恒等变形的基础,为数学交流提供了有效的途径。分解因式这一章在整个教材中起到了承上启下的作用。本章的教育价值还体现在使学生接受对立统一的观点,培养学生善于观察、善于分析、正确预见、解决问题的能力。
学情分析
通过探究平方差公式和运用平方差公式分解因式的活动中,让学生发表自己的观点,从交流中获益,让学生获得成功的体验,锻炼克服困难的意志建立自信心。
教学目标
1、在分解因式的过程中体会整式乘法与因式分解之间的联系。
2、通过公式a -b =(a+b)(a-b)的逆向变形,进一步发展观察、归纳、类比、等能力,发展有条理地思考及语言表达能力。
3、能运用提公因式法、公式法进行综合运用。
4、通过活动4,能将高偶指数幂转化为2次指数幂,培养学生的化归思想。
教学重点和难点
重点: 灵活运用平方差公式进行分解因式。
难点:平方差公式的推导及其运用,两种因式分解方法(提公因式法、平方差公式)的综合运用。