一名合格的人民教师应该把握好教学进程,上课前,教师都必须写好课题计划与教案。学生会在什么地方出现问题、出现什么问题,是教师在撰写教案时应该考虑到的问题。下面,我们为你推荐3的倍数教学反思,欢迎大家参考阅读!
3的倍数教学反思【篇1】
《最大公约数最小公倍数》反思自己的教学,我有下列的体会:课堂教学是一个动态的不断发展推进的过程。这个过程既有规律可循,又有灵活的生成性和不可预测性。只有通过课堂生成资源的适度开发和有效利用,才能促进预设教育目标的高效率完成或新的更高价值目标的生成。
这堂课学生在找“公倍数”和“最小公倍数”的方法时出现的新的发现就为我提供了一个宝贵的课堂再生资源,我充分的利用了这份宝贵的资源,让学生在兴趣最高涨时有了很了不起的发现。不过回想起来在我的平时教学中其实还有很多这样的机会,当时没有敏锐的捕捉到加以利用,是多么可惜的一件事。所以教师应该正视课堂教学中突发的每一件事,善加捕捉与利用。
学生不是一个容器,而是一支需要点燃的火把。我们只要珍惜课堂生成资源,用好课堂生成资源,就能创建富有生命活力的新课堂教学,并在创建过程中提升师生在课堂教学中教与学的质量。
3的倍数教学反思【篇2】
一、吃透教材,选择合适的学习材料
本节课是引导学生在自主参与、发现、归纳的基础上认识并建立并理解最小公倍数的概念的过程。五年级学生的生活经验和知识背景更为丰富,新课程标准要求教材选择具有现实性和趣味性的素材,采取螺旋上升的方式,由浅入深地促使学生在探索与交流中建立公倍数与最小公倍数的概念。
在此之前,学生已经了解了整除、倍数、因数以及公因数和最大公因数。本节课的意图是通过写出几个数的倍数,找出公有的倍数,再从公有的倍数中找出最小的一个,从而引出公倍数与最小公倍数的概念。接着用集合图形象地表示出4和6的倍数,以及这两个数公有的倍数,这一内容的学习也为今后的通分、约分学习打下的基础,具有科学的、严密的逻辑性。但是,教材中铺砖对于理解公倍数与最小公倍数的意义,比较抽象,不利于建立对概念的理解。本节课把原来铺墙砖的题目改为找两人的共同休息日来建立概念。体现了新课标的要求,学生的学习内容应该是现实的、有意义的、富有挑战性的;有效的数学活动必须建立在学生的认知发展水平和已有的知识经验基础之上;使学生感到数学就在自己身边。充分利用课堂中最有效的时间是前15钟,做好这段时间的教学,提高了学习效率。
二、吃透教材,确定准确的教学目标
教师主要围绕,让理解两个数的公倍数和最小公倍数的意义,通过解决实际问题,初步了解两个数的公倍数和最小公倍数在现实生活中的某些应用,体验解决问题策略的多样化,渗透集合思想,培养学生的抽象概括能力这些目标展开教学。把本节课的重点应放在学生对数的概念的认识上,体现了新课标中46年级的学生能找出10以内任意两个自然数的公倍数与最小公倍数的要求。小学生的生活实际问题的解决能力普遍较低,把运用公倍数与最小公倍数的知识解决简单的生活实际问题,定为本节课的难点。体现新课标中人人学有价值的数学,让学生通过观察、操作、反思等活动获得基本的数学技能的要求。
三、吃透教材,设计流畅的教学环节
小学生的动手欲较强,学生认识数的概念时更愿意自主参与,自己发现。再者,学生个人的解题能力有限,而小组合作则能更好地激发他们的数学思维,通过交流获得数学信息。通过动手,让学生在月历纸的上动手找一找,圈一圈;通过动口,在概念揭示前,学生动口说一说。给学生机会说动手之后的感悟,还可以在个人表达的同时倾听他人的说法。设计成寓教于乐的形式,将教学内容融入一环环的学生自主探索发现的过程中。
1、利用情境引入新课,通过月历探索新知。学生在月历上找出4和6的倍数的日期,清楚形象的看到两个数的倍数关系。
2、顺其自然地渗透概念,初步理解公倍数和最小公倍数。学生探索后,引导学生观察所找出的日期数,有意识地引导学生发现日历上的有特征的数,用自己的语言梳理新知,使学生在环环相扣的教学进程中顺理成章的理解概念,把生活问题提炼为数学问题,学生用自己的语言概括公倍数与最小公倍数的概念,沟通二者之间的联系。
3、创设问题情境,尝试应用,方法提炼。结合教学内容特征,创设富有生活情趣的问题情境,利用学生的生活经验与知识背景,鼓励学生解决简单的实际问题,激活学生的数学思维,提高解题技能。
4、巩固练习、不断刺激,不断巩固提升。先让学会用最基本的方法求两个数的最小公倍数。再用这样的知识解决生活中的排队问题,用富有生活气息的情境,激发学习兴趣,再次打通生活与数学的屏障。接着是找生日,铺墙砖,让用数学方法来解释生活现象,感受到求公因数与求公倍数的联系。
4、学生回忆整堂课所学知识。学生通过这一环节可以将整个学习过程进行回顾、按一定的线索梳理新知,形成整体印象,便于知识的理解记忆。
3的倍数教学反思【篇3】
《3的倍数的特征》是人教版义务教材新课程第八册的教学内容,对这节课的教学设计,有从2、5的倍数的特征中引入的、有让学生通过摆火柴棒研究的,其中不乏好点子好设计。但是,大部分老师都要抛出一个问题让学生思考:“火柴棒的总根数跟3的倍数有什么联系?”或者干脆问“3的倍数和数位上的数字的和有什么关系?”总觉得教师对学生的引导过于直接,对于五年级的学生,经过这样的提问,一般都能找到3的倍数的特征,也能用语言来表述。我认为,我们的关键不但要让学生找到3的倍数的特征,更应该引导学生怎样去发现数位上的数字的和与3的倍数之间的关系。我考虑,能不能在本节课中运用分类,让学生自主探究呢?以下是两个教学片段:
教学片段一:
让学生用30秒时间,写3的倍数,大部分学生都从小到大写了25个左右
老师板演了10个:105、111、156、273、300、339、504、918、1527、2442……然后提出探究的任务。
师:请你给自己写的3的倍数分类,看看能不能找到规律。限时2分钟。
(结束)学生回答。
生1:3、6、9;12、15、18、21、24……按位数分类。(有3人和他一样分)师:按位数分类,那么3位数里哪些是3的倍数呢:103、208是3的倍数
吗?(学生答不出)
生2:3、6、9、12、15、18、21、24、27、30;
33、36、39、42、45、48、51、54、57、60
63、66……
(有32人和他一样)
师:你分类的标准是什么?
生2:个位是0——9的都归为一类,共两类。
生3:共十类。个位是0的一类,个位是1的一类,个位是2的一类,到个位是9的一类。
师:懂了。3、33、63是一类;6、36、66是一类,共十类。那21253是不是3的倍数,能迅速判断吗?(生无语)
师:看来,分类的方法很多。但是,哪一种分类才能帮助我们发现3的倍数的特征,是有价值的呢?(学生陷入沉思)
以上学生的分类方法,都有不同的标准,从单一分类的角度来看,没有问题。但是对于寻求3的倍数的特征,却没有意义。大部分学生是从2、5的倍数的特征中受到启示,这是学生的经验,却是一种负迁移。课前,我也想到了,那么是不是就一定要先提醒学生,不要走弯路呢?我认为,负迁移也是一种宝贵的经验,经历过挫折,对知识的理解就会更加深刻,无需刻意回避。
教学片段二:
师:继续观察这些数,还有其它分类方法吗?限时5分钟。(陆续有学生举手,5分钟后,共有15位学生举手,巡视一遍。)
师:谁来介绍自己新的分类方法?
生1:3、21、30;
6、15、24、33、42;
9、18、36、45、63;
12、39、48、57;
……
师:你的分类标准是什么?
生1:第一类,每个数数位上的数字的和是3;第二类,每个数数位上的数字的和是6;第三类,每个数数位上的数字的和是9;第四类,每个数数位上的数字的和是12;以此类推。
师:谁来帮他“以此类推”?
生2:每个数数位上的数字的和是15,也是3的倍数;每个数数位上的数字的和是18,也是3的倍数。
生3:每个数数位上的数字的和是21,也是3的倍数;每个数数位上的数字的和是24,也是3的倍数。
师:你能用一句话来表达吗?
生4:每个数位上的数字的和是3、6、9、12、15、18等,这个数就是3的倍数。
生5:每个数位上的数字的和是3的倍数,这个数就是3的倍数。
师:很厉害。但是,我们需要验证。判断老师刚才写的3的倍数(前5个)105、111、156、273、300。
生4:1加0加5等于6,6是3的倍数,105也是3的倍数。
生5:1加1加1等于3,3是3的倍数,111也是3的倍数。
……
(一个学生根据规律回答,其他学生用竖式验证。)
生6:3的倍数的特征是找到了,但这样的.分类太乱。我一共分3类:
第一类:每个数数位上的数字的和是3:3、12、21、30;
第二类:每个数数位上的数字的和是6:6、15、24、42、51;
第三类:每个数数位上的数字的和是9:9、18、27、36、45……,
这样的数是3的倍数。
师:那老师的这些数:339、504、918、1527、2442属于哪一类呢?
生6:339,3加3加9等于15,然后1加5等于6,分到第二类;918,9加1加8等于18,然后1加8等于9,分到第三类;1527分到第二类;2442分到第一类。所有3的倍数没有超出这三类的。
师:厉害!(让其他学生说了两个四位数,用他的方法来判断是不是3的倍数,大概有三十个左右的学生能用这样的方法分析。老师又举了一个反例。)
师:谁能用几句话来概括?
生6:一个数,每个数位上的数字的和是3、6、9,如果和大于9的,数位上的数再加,直到出现一位数,如果是3、6、9,那么这个数就是3的倍数。
师:真佩服你们!
第二天,有学生告诉我他发现了一种更快判断3的倍数的方法,不用把数位上的数都加起来,比如538,3是3的倍数就不要管它了,只要5加8加一下,13不是3的倍数,538就不是3的倍数。我又说了一个五位数20xx,学生分析,6是3的倍数,不去管它,2加7是9,9是3的倍数,整个数就是3的倍数。
学生的探究能力如此之强,是我没想到的,学生快速判断3的倍数的方法,实际上已经综合了很多的知识,尽管不能很明确地用语言来表达,但是,方法是完全正确的,其实这又是一个学生新的探究的开始。
从本节课中,我有几点小小的感悟:
一、教师不要害怕学生探究的失败。学生第一次探究的失败,完全是正常的,这是他们运用已有的经验,进行探究后的结果。尽管这种经验的迁移是负作用的,但是从失败到成功的过程,记忆是深刻的。负迁移在教学中比比皆是,我们不但不能回避,而且要好好利用,要让学生积累对数学活动的经验,同时能将“经验材料组织化”。
二、教师要给学生创造探究的机会。学生的探究能力其实是老师意想不到的。最后一位学生对3的倍数的概括(一个数,每个数位上的数字的和是3、6、9,如果和大于9的,数位上的数再加,直到出现一位数,如果是3、6、9,那么这个数就是3的倍数。),尽管实际的意义不是很大,但是它更具有横向的关联,2的倍数特征是:个位是0、2、4、6、8的数是2的倍数;5的倍数的特征是个位是0或5的数是5的倍数。或许,这种类比联想更容易让学生理解新的知识,更何况是学生自己探究出来的。其实很多教学内容我们都可以让学生进行探究,关键是教师如何给学生提供一个探究的载体,一种探究的环境。
三、教师对学过的知识要经常地进行整合。新教材的特点是有些知识点分得比较散,所以教师要经常把学生学过的知识,在新知中不知不觉地再应用,再巩固。温故而知新,在复习与巩固中,学生会对旧知有更高的认识,更深的理解,也容易排除学生对新知的畏难思想。同时要经常地对各种知识进行串联,编织学生知识的网络,使学生认识到各种知识之间是相互关联相互作用的,以利于学生解决一些实际问题或综合性问题。
四、教师要经常在教学中渗透一些数学思想。分类是一种数学思想,同时也是一种数学思维的工具。人教版小学数学第一册学生就接触了分类《整理房间》,第七册《角的分类》、第八册《三角形的分类》,让学生对分类有了更多的理解。其实在生活中,无处不在的分类:超市货物的摆放、自己书本的整理、性别之间、班级之间等等。对于分类的标准,分类的原则,学生在不知不觉中有了感悟。借助分类,有40%的学生找到了3的倍数的特征,学生完全是在观察、尝试、验证的基础上探究的,是自主的行为研究。在小学数学中,渗透了很多数学思想,如集合、对应、假设、比较、类比、转化、分类、统计思想等,在教学中合理地运用这些数学思想,对学生学习数学的影响是深远的,也会让我们的数学探究活动更有意义,更有价值。
3的倍数教学反思【篇4】
本节课教学公倍数和最小公倍数,是在学生理解了倍数概念的基础上教学的。在例1的教学中,我首先让学生用长3厘米、宽2厘米的长方形纸片来分别铺边长是6厘米和8厘米的正方形进行操作,然后通过一系列的讨论,引发学生进行进一步思考其中的原因,得出因为6既是2的倍数,又是3的倍数,这个长方形纸片就能正好把它铺满;8虽然是2 的倍数,但不是3的倍数,则不行。学生具体感知公倍数的含义,揭示公倍数的概念。在教学例2找6和9的公倍数,对于学生而言并不是很难,主要是方法上的指导。尤其是用集合图表示6和9的公倍数对于学生来讲是陌生的,所以我在教学时,就直接展示集合图,让学生看图回答,这样可以比较容易地帮助学生认识这种集合图的形式,了解其内容,从而理解6的倍数、9的倍数及6和9的公倍数三者之间的关系,并且强调因为一个数的倍数的个数是无限的,所以几个数的公倍数的个数也是无限的,后面应该用省略号。纵观这节课,学生学得还是比较轻松,掌握的较好。
3的倍数教学反思【篇5】
1、结合学生实际创设生活情境。
《新课程标准》十分强调数学与现实生活的联系,在教学要求中增加了“使学生感受数学与现实生活的联系”。“最小公倍数”是一节概念课,与学生的生活实际看似并无多大联系,为了使学生体验到概念与生活的联系,感受到数学知识在生活中的实际应用。我们对教材内容作了适当的补充调整,将运动会的情景贯穿始终。在解决实际问题“猜一猜, 参加接力比赛的同学可能有多少人?至少有多少人?”的同时很自然的得到了“公倍数”和“最小公倍数”的概念,为后面算理的探究做好了铺垫。这样设计,不仅激发了学生学习的兴趣,而且让学生感受到数学与生活是紧密联系的,体会到学习数学源于生活又高于生活的特点。
2、通过自主探究引导学生构建概念和方法
(1)概念的构建
“公倍数”“最小公倍数”的概念,和“公约数”“最大公约数”的概念非常的相似,学生理解起来也比较容易。这部分内容我们采用迁移、引导的形式进行概念的构建。利用问题“24与3和4分别是什么关系”引导学生发现24 是3的倍数,同时也是4的倍数。利用旧知很顺利的自主构建出“公倍数”和“最小公倍数”的概念。
(2) 方法的构建
“最小公倍数”这节课的重难点就在于理解求最小公倍数的算理。在算理的突破上,我们采用了对比的手段。利用已有的分解质因数的知识有效的进行了对比。
当学生用分解质因数的方法计算出[18,30]=2×3×3×5=90 后,设计了问题: 2、3是什么?3、5是什么?两个3一样吗?明确了公有质因数和独有质因数以后,又将18和30的全部的质因数相乘和[18,30]进行对比。学生很直观的看到,公有的要选代表保证是最小的?独有的全取保证是公倍数?把两个结合起来就是最小公倍数。算理在直观的比较中一目了然。而求最小公倍数的短除的形式,学生在理解了算理的基础上,加上求最大公约数的知识经验,理解起来已然顺理成章。
接下来我们结合运动会项目设计一个题目“用自己喜欢的方法求12和28的最小公倍数。”使学生在练习中自然的对算法进行优化,自主构建出短处形式的解题方法。
在整个过程中学生利用已有的认识结构,自己动脑、动口,将直观比较与亲身体验建立起实质性的联系,进行自主构建。
3、发挥习题作用进行算理巩固
数学课堂上学生在建立起概念,找到解题方法之后,必须做相应的数学练习题,才能对知识进行巩固,对算理加深理解,才能形成技能、技巧,培养思维能力。
我们设计以下两个练习题:
(1)填空
A=2×3×5
B=3×5×7
则[A,B]= (最小公倍数是多少?你是怎么找的?)
设计这道练习题的目的有两个。第一:巩固算理,突出应用算理灵活、巧妙的解决实际问题。第二:满足不同层次学生的需求。这道题除了应用算理直接用2×3×5×7=210以外,还可以将A、B的结果分别计算出来后再用短除的形式计算[A,B]。这一方法对于那些对算理理解的不是很透彻,尤其是不能灵活的应用算理的学生来说无疑是一种好方法。在我们面向全体学生的教学中很需要这种我们自认为“麻烦”的方法。
(2)两个数的最小公倍数是12,这两个数可能是( )和( )。
设计这道练习题的目的也有两个。首先,通过这道题再一次激发学生的学习兴趣,将学习热情推向一个高潮。同时引出求两个数的最小公倍数时具有互质关系、倍数关系、一般关系的三组数。其次,将求具有互质关系、倍数关系、一般关系的两个数的最大公约数的规律进行迁移,通过自主探究,总结出具有这三种关系的两个数的最小公倍数的规律。
需要改进的地方
1、自己在教学中语言还不够简练,对学生放手还不够。有些问题可以大胆放手。
2、在算理的突破上,虽然突破了难点,但问题较碎,老师还在牵着学生的手,一步一步去理解,其实,对于我们的学生完全可以通过讨论自己发现。
3的倍数教学反思【篇6】
在学习3的倍数中,刚开始,通过复习2,5的倍数,孩子们都能对数快速做出判断,适时的给出3、4、5三个数拼出2的倍数和5的倍数的数,在给出让孩子们猜测3的倍数的特征?孩子们的定势思维是个位为3的倍数,在此基础上,让孩子们进行判断,出现认知冲突,迫使孩子们继续寻找新的途径去解决。在百数图上,由孩子们找出3的倍数的数,并观察3的倍数有什么特征。孩子们在汇报特征时,出现“我发现每个斜排个位上的数都减少一”“我还发现每个斜排十位上的数都减一”适时的引导孩子们观察一个加一一个减一那么也就是说每个斜排的数的各位加起来都是相同的?这时孩子们还发现“第一个斜排加起来都是3”“ 第一个斜排加起来都是6” “第一个斜排加起来都是9”……这时候,离教学目标更为接近,让孩子们观察每个斜排这些3的倍数特征,得出都是3的倍数的猜测,并进行验证,得出3的倍数特征。再孩子们通过自己的观察发现3的倍数的特征后,让孩子们对于3的倍数特征有更深的认识。
孩子们可以发现我们老师在备课中忽略的知识,让孩子们充分发言,并从中提取有价值的信息,才能引导出孩子们对于他们来说更为直接的认知方式。
3的倍数教学反思【篇7】
去年教学《公倍数和公因数》这一单元时,依照学生预习、阅读课本进行教学,老师没有作过多的讲解,从学生的练习反馈中,部分学生求两个数的最大公因数和最小公倍数错误百出,反思教学后,觉得用课本上列举的方法,真的很难一下子准确找到最大公因数或最小公倍数。如:8和10的最小公倍数,有学生写80,25和50的最大公因数有学生写5。……调查询问学生找两个数公倍数和最小公倍数,或者两个数的公因数和最大公因数的感受,他们都说“太麻烦了”。
今年教学《公倍数和公因数》这一单元时,我在去年教学《公倍数和公因数》的基础上作了一些改进:
一、仍然是将预习前置。
二、动手操作,想象延伸。
让学生动手操作,提高感知效果,帮助学生形成丰富的表象,是促进形象思维发展的有利途径。例题教学中让学生动手铺,铺后想,想后算,算后思。
用长3厘米、宽2厘米的长方形纸片分别铺边长6厘米、8厘米的正方形,能铺满哪个正方形?拿出手中的图形,动手拼一拼。
学生分组操作,用除法算式把不同的摆法写出来。
提问:通过刚才的活动,你们发现了什么?
以直观的操作活动,在具体的问题情境中体会公倍数和公因数与生活的联系,让学生经历公倍数和公因数概念的形成过程,加深对抽象概念的理解。
思考:根据刚才铺正方形的过程,在头脑里想一想,用3厘米、宽2厘米的长方形纸片正好铺满边长多少厘米的正方形?在小组里交流。
三、在教学中严格要求学生先用“列举法”教学“求两数公倍数与公因数”;在学生相对较熟练的时候尝试让学生直接说出公倍数与公因数;在此基础上适当介绍后面的阅读知识,但不要求学生使用。
四、在教学了用“列举法”“求两数公倍数与公因数”的知识之后,适当提高训练难度,将求“最小公倍数”与“最大公因数”合并训练。通过联系“最大公因数”、“最小公倍数”的知识,引导学生发现求两个数的最小公倍数和最大公因数的扩倍法等其它的方法。要求学生根据情况,用自己喜欢的方法来求两个数的最小公倍数和最大公因数。这样,给学生结合题目中两个数的特点,自主选择方法的空间,学生比较喜欢,掌握较好。通过练习引导学生感悟、概括出了一些特殊情况:(1)两个数是倍数关系的,这两个数的最小公倍数是其中较大的一个数,最大公因数是其中较小的一个数;(2)三种最大公因数是1,最小公倍数是两数乘积的情况(“互质数”这个概念学生没有学到):①两个不同的素数;②两个连续的自然数;③1和任何自然数。
课后反思:
一、预习后的课堂教学,还要教,直接放手要出问题。
二、介绍一下短除法是有必要的。但不能直接按传统的教学思路以短除法求最大公因数和最小公倍数简单代替列举法。
三、应逐步鼓励学生把求最大公因数和最小公倍数过程想在脑中,直接说出结果。引导感兴趣的同学在课后探索其它的求最大公因数和最小公倍数的内容,适当提高学生的思维水平。
小编精心推荐阅读: