出国留学网

目录

初一数学教案集合13篇

字典 |

2023-05-21 10:24

|

推荐访问

初一数学教案

【 liuxue86.com - 初中教案 】

  在教授学生之前,老师会提前准备好教案和课件,且这些内容都是老师自己去精心完善的。教案在教学效果中扮演着至关重要的角色。为了帮助大家更好地实践“初一数学教案”,我们整理了一些实用信息,希望本文能为您的工作和生活提供帮助!

初一数学教案 篇1

  教学目标

  1.使学生正确理解的意义,掌握的三要素;

  2.使学生学会由上的已知点说出它所表示的数,能将有理数用上的点表示出来;

  3.使学生初步理解数形结合的思想方法.

  教学重点和难点

  重点:初步理解数形结合的思想方法,正确掌握画法和用上的点表示有理数.

  难点:正确理解有理数与上点的对应关系.

  课堂教学过程 设计

  一、从学生原有认知结构提出问题

  1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?

  2.用“射线”能不能表示有理数?为什么?

  3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?

  待学生回答后,教师指出,这就是我们本节课所要学习的内容——.

  二、讲授新课

  让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃.

  与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):

  1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);

  2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);

  3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…

  提问:我们能不能用这条直线表示任何有理数?(可列举几个数)

  在此基础上,给出的定义,即规定了原点、正方向和单位长度的直线叫做.

  进而提问学生:在上,已知一点P表示数-5,如果上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?

  通过上述提问,向学生指出:的三要素——原点、正方向和单位长度,缺一不可.

  三、运用举例 变式练习

  例1 画一个,并在上画出表示下列各数的点:

  例2 指出上A,B,C,D,E各点分别表示什么数.

  课堂练习

  示出来.

  2.说出下面上A,B,C,D,O,M各点表示什么数?

  最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示.

  四、小结

  指导学生阅读教材后指出:是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法.

  本节课要求同学们能掌握的三要素,正确地画出,在此还要提醒同学们,所有的有理数都可用上的点来表示,但是反过来不成立,即上的点并不是都表示有理数,至于上的哪些点不能表示有理数,这个问题以后再研究.

  五、作业

  1.在下面上:

  (1)分别指出表示-2,3,-4,0,1各数的点.

  (2)A,H,D,E,O各点分别表示什么数?

  2.在下面上,A,B,C,D各点分别表示什么数?

  3.下列各小题先分别画出,然后在上画出表示大括号内的一组数的点:

  (1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};

初一数学教案 篇2

  教学目标:

  (一)知识与技能

  理解单项式及单项式系数、次数的概念;能准确迅速地确定一个单项式的系数和次数;会用含字母的式子表示实际问题中的数量关系。

  (二)过程与方法

  1.在经历用字母表示数量关系的过程中,发展符号感;

  2. 通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力

  (三)情感态度价值观

  1.通过丰富多彩的现实情景,让学生经历从具体问题中抽象出数量关系,在解决问题中了解数学的价值,增长“用数学”的信心.

  2.通过用含字母的式子描述现实世界中的数量关系,认识到它是解决实际问题的重要数学工具之一。

  教学重、难点:

  重点:单项式及单项式系数、次数的概念。

  难点:单项式次数的概念;单项式的书写格式及注意点。

  教学方法:

  引导——探究式

  在感性材料的基础上,学生自主探究现实情景中用字母表示数的问题,通过观察、分析、比较,找出材料中个体的共同点,教师引导学生共同抽象、概括单项式及相关的概念.

  教具准备:

  多媒体课件、小黑板.

  教学过程:

  一、 创设情境,引入新课

  出示一张奔驰在青藏铁路线上的列车照片,并配上歌曲《天路》,边欣赏边向学生介绍青藏铁路所创造的历史之最。

  情境问题:

  青藏铁路西线上,在格尔木到拉萨之间有一段很长的冻土地段。列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度可以达到120千米/时,请根据这些数据回答:列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?t小时呢?

  设计意图:从学生熟悉的情境出发,创设情境,让学生感受青藏铁路的伟大成就,激发

  爱国主义情感,得到一次情感教育。

  解:根据路程、速度、时间之间的关系:路程=速度×时间

  2小时行驶的路程是:100×2=200(千米)

  3小时行驶的路程是:100×3=300(千米)

  t小时行驶的路程是:100×t=100t(千米)

  注意:在含有字母的式子中若出现乘号,通常将乘号写作“ · ”或省略不写。

  如:100×a可以写成100a或100a。

  代数式:用基本的运算符号(运算包括加、减、乘除、乘方等)把数和表示数的字母连接起来的式子。

  代数式可以简明地表示数量和数量的关系,本节我们就来学习最基本也是最重要的一类代数式整式。

  设计意图:从学生已有的数学经验:路程=速度×时间出发,建立新旧知识之间的联系

  让学生历一个从一般到特殊再到一般的认识过程,发展学生的认知观念。

  二、合作交流,探究新知

  探究

  思考:用含字母的式子填空(独立完成),并观察列出的式子有什么共同特点(小组可交流讨论)。

  1、边长为a的正方体的表面积是__,体积是__.

  2、铅笔的单价是x元,圆珠笔的单价是铅笔的2.5倍,则圆珠笔的单价是___元。

  3、一辆汽车的速度是v千米∕小时,它t小时行驶的路程为__千米。

  4、数n的相反数是__。

  解:(1)6a2、 a3 (2)2.5x (3) vt (4)-n

  思考:它们有什么共同的特点?

  6a 2=6·a·a a3=a·a·a 2.5x=2.5·x vt=v·t -n=-1·n

  单项式:数与字母、字母与字母的乘积。

  注意:单独的一个数或字母也是单项式。

  设计意图:从熟悉的实际背景出发,充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,获得数学猜想和数学经验,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。

  火眼金睛

  下列各代数式中哪些是单项式哪些不是?

  (1)a (2) 0 (3) a2

  (4) 6a (5)

  (6)

  (7)3a+2b (8)xy2

  设计意图:加强学生对不同形式的单项式的直观认识。

  解剖单项式

  系数:单项式中的数字因数。

  如:-3x的系数是 ,-ab的系数是 , 的系数是 。

  次数:一个单项式中的所有字母的指数的和。

  如:-3x的次数是 ,ab的次数是 。

  小试身手

  单项式 2a 2 -1.2h xy2 -t2 -32x2y

  系数

  次数

  设计意图:了解学生对单项式系数、次数的概念是否理解,找出存在的问题,从而进一步巩固概念。

  单项式的注意点:

  (1)数与字母相乘时,数应写在字母的___,且乘号可_________;

  (2)带分数作为系数时,应改写成_______的形式;

  (3)式子中若出现相除时,应把除号写成____的形式;

  (4)把“1”或“-1”作为项的系数时,“1”可以__不写。

  行家看门道

  ①1x ②-1x

  ③a×3 ④a÷2

  ⑤ ⑥m的系数为1,次数为0

  ⑦ 的系数为2,次数为2

  设计意图:单项式的书写和表示有其特有的格式和注意点,通过以上两个题目让学生进一步明确注意点。

  三、例题讲解,巩固新知

  例1:用单项式填空,并指出它们的系数和次数:

  (1)每包书有12册,n包书有 册;

  (2)底边长为a,高为h的三角形的面积 ;

  (3)一个长方体的长和宽都是a,高是h,它的体积是 ;

  (4)一台电视机原价a元,现按原价的9折出售,这台电视机现在的售价

  为 元;

  (5)一个长方形的长0.9,宽是a,这个长方形的面积是 .

  解:(1)12n,它的系数是12,次数是1

  (2) ,它的系数是 , 次数是2;

  (3)a2h,它的系数是1,次数是3;

  (4)0.9a,它的系数是0.9,次数是1;

  (5)0.9a,它的系数是0.9,次数是1。

  设计意图:学生能用单项式表示简单的实际问题中的数量关系,并进一步巩固单项式的系数、次数的概念。

  试一试

  你还能赋予0.9a一个含义吗?

  设计意图:同一个式子可以表示不同的含义,通过这个例子让学生进一步体会式子更具有一般性,而且发散学生思维。

  大胆尝试

  写出一个单项式,使它的系数是2,次数是3.

  设计意图:充分发挥学生的想象力,让每一个学生都有获得成功的体验,为不同程度的学生一个展示自我的机会,激发他们的学习兴趣。

  四、拓展提高

  尝试应用

  用单项式填空,并指出它们的系数和次数:

  (1)全校学生总数是x,其中女生占总数48%,则女生人数是 ,男生人数是 ;

  (2)一辆长途汽车从杨柳村出发,3小时后到达相距s千米的溪河镇,这辆长途汽车的平均速度是 ;

  (3)产量由m千克增长10%,就达到 千克;

  设计意图:让学生感受单项式在实际生活中的应用,进一步掌握单项式及单项式系数、次数的概念。

  能力提升

  1、已知-xay是关于x、y的三次单项式,那么a= ,b= .

  2、若-ax2yb+1是关于x、y的五次单项式,且系数为-3,则a= ,b= .

  设计意图:照顾学有余力的学生,拓展学生思维,让学生体会跳一跳、摘桃子的乐趣。

  五、小结

  本节课你感受到了吗?

  生活中处处有数学

  本节课我们学了什么?你能说说你的收获吗?

  1、单项式的概念: 数与字母、字母与字母的乘积。

  2、单项式的系数、次数的概念。

  系数:单项中的数字因数;

  次数:单项中所有字母的指数和。

  3、会用单项式表示实际问题中的数量关系,注意列式时式子要规范书写。

  设计意图:通过回顾和反思,让学生看到自己的进步,激励学生,使学生相信自己在今后的学习中不断进步,不断积累数学活动经验,促进学生形成良好的心理品质。

  结束寄语

  悟性的高低取决于有无悟“心”,其实,人与人的差别就在于你是否去思考,去发现!

  设计意图:这是对学生的激励也是对学生的一种期盼,可以增进师生间的情感交流。

  六、板书设计

  2.1 整式

  单项式概念 探究 例1 多

  单项式的系数概念 观察交流 尝试应用 媒

  单项式的次数概念 能力提升 体

  七、作业:

  1.作业本(必做)。

  2. 请下面图片设计一个故事情境,要求其中包含的数量关系能够用单项式表示,并且指出它们的系数和次数(选做)。

  设计意图:布置分层作业,既让学生掌握基础知识,又使学有余力的学生有所提高。让学生自行编题是一种创造性的思维活动,它可以改变一味由教师出题的形式,活跃学生思维,使学生能够透彻理解知识,同时培养同学之间的竞争意识。

  八、设计理念:

  本节课是研究整式的起始课,它是进一步学习多项式的基础,因此对单项式有关概念的理解和掌握情况,将直接影响到后续学习。为突出重点,突破难点,教学中要加强直观性,即为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念,同时也要注重分析,亦即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫。

  针对七年级学生学习热情高,但观察、分析、认识问题能力较弱的特点,教学时将提供大量感性材料,以启发引导为主,同时辅之以讨论、练习、合作交流等学习活动,达到掌握知识的目的,并逐步培养起学生观察、分析、抽象、概括的能力,同时注重培养学生由感性认识上升到理性认识,为进一步学习同类项打下坚实的基础。

初一数学教案 篇3

  学生两人一小组合作探索。并让已经找出方程组解的学生利用实物投影,讲明自己的解题思路。

  一般思路:由一个方程取适当的xy的值,代到另一个方程尝试.

  (设计意图:把课堂还给学生,让他们探索并解答问题,在获取新知识的同时也积累数学活动的经验)

  1.据了解,某商店出售两种不同星号的“红双喜”牌乒乓球。其中“红双喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同学一共买了4盒,刚好有15个球。

  (1)设该同学“红双喜”二星乒乓球买了x盒,三星乒乓球买了y盒,请根据问题中的条件列出关于x、y的方程组。(2)用列表尝试的方法解出这个方程组的解。

  由学生独立完成,并分析讲解。

  2.例:已知方程3X+2Y=10

  ⑴当X=2时,求所对应的Y的值;

  ⑵取一个你自己喜欢的数作为X的值,求所对应的Y的值;

  ⑶用含X的代数式表示Y;

  ⑷用含Y的代数式表示X;

  ⑸当X=-2,0时,所对应的Y值是多少;

  (设计意图:此处设计主要是想让学生形成求二元一次方程的解的一般方法,先让学生展示他们的思维过程,再从他们解一元一次方程的重复步骤中提炼出用一个未知数的代数式表示另一个未知数,然后把它与原方程比较,把一个未知数的值代入哪一个方程计算会更简单,形成“正迁移”,引导学生体会“用关于一个未知数的代数式表示另一个未知数”的过程。)

  (四)课堂小结,布置作业

  1.这节课学哪些知识和方法?

  2.你还有什么问题或想法需要和大家交流?

  3.教材P82

  教学设计说明:

  1.本课设计主线有两条。其一是知识线,内容从二元一次方程组的概念到二元一次方程组解的概念再到列表尝试法,环环相扣,层层递进;第二是能力培养线,学生从看书理解二元一次方程组的概念到学会归纳解的概念,再到自主探索,用列表尝试法解题,循序渐进,逐步提高。

  2.“让学生成为课堂的真正主体”是本课设计的主要理念。由学生给出数据,得出结果,再让他们在积极尝试后进行讲解,实现生生互评。把课堂的一切交给学生,相信他们能在已有的知识上进一步学习提高,教师只是点播和引导者。

  3.本课在设计时对教材也进行了适当改动。例题方面考虑到数码时代,学生对胶卷已渐失兴趣,所以改为学生比较熟悉的乒乓球为体裁。另一方面,充分挖掘练习的作用,为知识的落实打下轧实的基础,为学生今后的进一步学习做好铺垫。

初一数学教案 篇4

  大家都听说过一句名言:“世界上不是缺少美,而是缺少发现美的眼睛”,大家知道这句话是谁说的吗?不知道没关系,大家记住下一句名言就好:“世界上不是缺少数学,而是缺少发现数学的眼睛——李老师语录”,那这个著名的李老师是谁呢?远在天边,近在眼前。不要太惊讶,想要签名的下课来找我就行。

  好,那我们接下来就用发现数学的眼睛来看一看,生活中常见的几何体都有哪些物体,分别是什么形状?水杯,篮球,冰激凌,金字塔,黑板擦。分别对应圆柱,球,圆锥,棱锥,棱柱。其中长方体,正方体是特殊的棱柱。

  好了,几何体我们都了解了,面对这些杂乱无章的几何体是不是感觉很乱,接下来我们就给几何体分分类:

  一、常见几何体分类

  1、按照柱、锥、球分类

  圆柱

  柱生活中的立体图形球棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱。

  锥圆锥

  棱锥

  2、按照有无顶点分类

  生活中的立体图形

  3、按照有无曲面分类

  二、棱柱(直)

  1、基本概念

  (1)棱:在棱柱中,任何相邻的两个面的交线叫做棱。

  (2)侧棱:在棱柱中,相邻两个侧面的交线叫做侧棱。

  2、特征

  (1)棱柱的所有侧棱长相等。

  (2)棱柱的上下底面完全相同且都是多边形。

  (3)棱柱的侧面都是长方形。

  (4)n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。

  3、分类

  按照底面多边形的边数分类,底面几边形就是几棱柱。

  三、图形的构成元素

  点:线与线橡胶的地方就是点。

  1线:面与面相交的地方就是线。

  面:包围着体的是面。

  2、联系

  点动成线,线动成面,面动成体。

  展开与折叠

  一、正方体的展开图(11种)

  1-4-1型:(6种)

  2-3-1型(3种)

  2-2-2型(1种)

  3-3型(

  1种)

  二、正方体的折叠

  展开图中不出现一字型、田字形、凹字形,2-4型,若有此形状的展开图则折不成正方体。

  三、总结规律:

  一线不过四,

  田凹应弃之;

  相间、Z端是对面,

  间二、拐角邻面知。

  四、常见几何体的展开图

  三、截一个几何体

  一、正方体的截面

  用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。

  可能出现的:锐角三角型、等边、等腰三角形,正方形、矩形、非矩形的平行四边形、非等腰梯形、等腰梯形、五边形、六边形、正六边形

  不可能出现:钝角三角形、直角三角形、直角梯形、正五边形、七边形或更多边形

  二、常见几何体截面

  四、从三个方向看物体的形状

  一、三视图

  物体的三视图指主视图、俯视图、左视图。

  主视图:从正面看到的图,叫做主视图。

  左视图:从左面看到的图,叫做左视图。

  俯视图:从上面看到的图,叫做俯视图。

  二、联系

  主俯长对正,主左高平齐,俯左宽相等。

  三、画法

  一看,二画,三查(尺寸,虚实)

初一数学教案 篇5

  教学目的

  1.理解用一元一次方程解工程问题的本质规律;通过对“工程问题”的分析进一步培养学生用代数方法解决实际问题的能力。

  2.理解和掌握基本的数学知识、技能、数学思想方法,获得广泛的数学活动经验,提高解决问题的能力。

  重点、难点

  重点:工程中的工作量、工作的效率和工作时间的关系。

  难点:把全部工作量看作“1”。

  教学过程

  一、复习提问

  1.一件工作,如果甲单独做2小时完成,那么甲独做I小时完成全

  部工作量的多少?

  2.一件工作,如果甲单独做。小时完成,那么甲独做1小时,完成

  全部工作量的多少?

  3.工作量、工作效率、工作时间之间有怎样的关系?

  二、新授

  阅读教科书第18页中的问题6。

  分析:1.这是一个关于工程问题的实际问题,在这个问题中,已经知道了什么? 已知:制作一块广告牌,师傅单独完成需4天,徒弟单独做要6天。

  2.怎样用列方程解决这个问题?本题中的等量关系是什么?

  [等量关系是:师傅做的工作量+徒弟做的工作量=1)

  [先要求出师傅与徒弟各完成的工作量是多少?]

  两人的工效已知,因此要先求他们各自所做的天数,因此,设师傅做了x天,则徒弟做(x+1)天,根据等量关系列方程。 解方程得 x=2

  师傅完成的工作量为= ,徒弟完成的工作量为=

  所以他们两人完成的工作量相同,因此每人各得225元。

  三、巩固练习

  一件工作,甲独做需30小时完成,由甲、乙合做需24小时完成,现

  由甲独做10小时;

  请你提出问题,并加以解答。

  例如 (1)剩下的乙独做要几小时完成?

  (2)剩下的由甲、乙合作,还需多少小时完成?

  (3)乙又独做5小时,然后甲、乙合做,还需多少小时完成?

  四、小结

  1.本节课主要分析了工作问题中工作量、工作效率和工作时间之

  间的关系,即 工作量=工作效率×工作时间

  工作效率= 工作时间=

  2.解题时要全面审题,寻找全部工作,单独完成工作量和合作完成工作量的一个等量关系列方程。

  五、作业

  教科书习题6.3.3第1、2题。

初一数学教案 篇6

  教学目标:

  1、知识与技能

  (1)通过实例,感受引入负数的必要性和合理性,能应用正负数表示生活中具有相反意义的量。

  (2)理解有理数的意义,体会有理数应用的广泛性。

  2、过程与方法

  通过实例的引入,认识到负数的产生是来源于生产和生活,会用正、负数表示具有相反意义的量,能按要求对有理数进行分类。

  重点、难点:

  1、重点:正数、负数有意义,有理数的意义,能正确对有理数进行分类。

  2、难点:对负数的理解以及正确地对有理数进行分类。

  教学过程:

  一、创设情景,导入新课

  大家知道,数学与数是分不开的,现在我们一起来回忆一下,小学里已经学过哪些类型的数?

  学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的.

  为了表示一个人、两只手、……,我们用到整数1,2,……

  为了表示“没有人”、“没有羊”、……,我们要用到0.

  但在实际生活中,还有许多量不能用上述所说的自然数、零或分数、小数表示。

  二、合作交流,解读探究

  1、某市某一天的温度是零上5℃,最低温度是零下5℃。要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚。它们是具有相反意义的两个量。

  现实生活中,像这样的相反意义的量还有很多……例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的。“运进”和“运出”,其意义是相反的。

  同学们能举例子吗?

  学生回答后,教师提出:怎样区别相反意义的量才好呢?

  待学生思考后,请学生回答、评议、补充。

  教师小结:同学们成了发明家.甲同学说,用不同颜色来区分,比如,红色5℃表示零下5℃,黑色5℃表示零上5℃;乙同学说,在数字前面加不同符号来区分,比如,△5℃表示零上5℃,×5℃表示零下5℃…….其实,中国古代数学家就曾经采用不同的颜色来区分,古时叫做“正算黑,负算赤”.如今这种方法在记账的时候还使用.所谓“赤字”,就是这样来的。

  现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作-5℃(读作负5℃)。这样,只要在小学里学过的数前面加上“+”或“-”号,就把两个相反意义的量简明地表示出来了。

  让学生用同样的方法表示出前面例子中具有相反意义的量:

  高于海平面8848米,记作+8848米;低于海平面155米,记作-155米;

  教师讲解:什么叫做正数?什么叫做负数?强调,数0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量。并指出,正数,负数的“+”“-”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号。

  2、给出新的整数、分数概念

  引进负数后,数的范围扩大了。过去我们说整数只包括自然数和零,引进负数后,我们把自然数叫做正整数,自然数前加上负号的数叫做负整数,因而整数包括正整数(自然数)、负整数和零,同样分数包括正分数、负分数。

  3、给出有理数概念

  整数和分数统称为有理数。

  4、有理数的分类

  为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同根据有理数的定义可将有理数分成两类:整数和分数。有理数还有没有其他的分类方法?

  待学生思考后,请学生回答、评议、补充。

  教师小结:按有理数的符号分为三类:正有理数、负有理数和零。在有理数范围内,正数和零统称为非负数。向学生强调:分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类。

  三、总结反思

  引导学生回答如下问题:本节课学习了哪些基本内容?学习了什么数学思想方法?应注意什么问题?

  由于实际生活中存在着许多具有相反意义的量,因此产生了正数与负数。正数是大于0的数,负数就是在正数前面加上“-”号的数,负数小于0。0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃。

  四、课后作业:课本P5习题1.1A第1、2、4题。

初一数学教案 篇7

  教学目标1,掌握相反数的概念,进一步理解数轴上的点与数的对应关系;

  2,通过归纳相反数在数轴上所表示的点的特征,培养归纳能力;

  3,体验数形结合的思想。

  教学难点归纳相反数在数轴上表示的点的特征

  知识重点相反数的概念

  教学过程(师生活动)设计理念

  设置情境

  引入课题问题1:请将下列4个数分成两类,并说出为什么要这样分类

  4,-2,-5,+2

  允许学生有不同的.分法,只要能说出道理,都要难予鼓励,但教师要做适当的引导,逐渐得出5和-5,+2和-2分别归类是具有较特征的分法。

  (引导学生观察与原点的距离)

  思考结论:教科书第13页的思考

  再换2个类似的数试一试。

  归纳结论:教科书第13页的归纳。以开放的形式创设情境,以学生进行讨论,并培养分类的能力

  培养学生的观察与归纳能力,渗透数形思想

  深化主题提炼定义给出相反数的定义

  问题2:你怎样理解相反数定义中的“只有符号不同”和“互为”一词的含义?零的相反数是什么?为什么?

  学生思考讨论交流,教师归纳总结。

  规律:一般地,数a的相反数可以表示为-a

  思考:数轴上表示相反数的两个点和原点有什么关系?

  练一练:教科书第14页第一个练习体验对称的图形的特点,为相反数在数轴上的特征做准备。

  深化相反数的概念;“零的相反数是零”是相反数定义的一部分。

  强化互为相反数的数在数轴上表示的点的几何意义

  给出规律

  解决问题问题3:-(+5)和-(-5)分别表示什么意思?你能化简它们吗?

  学生交流。

  分别表示+5和-5的相反数是-5和+5

  练一练:教科书第14页第二个练习利用相反数的概念得出求一个数的相反数的方法

  小结与作业

  课堂小结1,相反数的定义

  2,互为相反数的数在数轴上表示的点的特征

  3,怎样求一个数的相反数?怎样表示一个数的相反数?

  本课作业1,必做题教科书第18页习题1.2第3题

  2,选做题教师自行安排

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  1,相反数的概念使有理数的各个运算法则容易表述,也揭示了两个特殊数的特征.这两个特殊数在数量上具有相同的绝对值,它们的和为零,在数轴上表示时,离开原点的距离相等等性质均有广泛的应用.所以本教学设计围绕数量和几何意义展开,渗透数形结合的思想.

  2,教学引人以开放式的问题人手,培养学生的分类和发散思维的能力;把数在数轴上表示出来并观察它们的特征,在复习数轴知识的同时,渗透了数形结合的数学方法,数与形的相互转化也能加深对相反数概念的理解;问题2能帮助学生准确把握相反数的概念;问题3实际上给出了求一个数的相反数的方法.

  3,本教学设计体现了新课标的教学理念,学生在教师的引导下进行自主学习,自主探究,观察归纳,重视学生的思维过程,并给学生留有发挥的余地.

  课题:1.2.4绝对值

  教学目标1,掌握绝对值的概念,有理数大小比较法则.

  2,学会绝对值的计算,会比较两个或多个有理数的大小.

  3.体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想.

  教学难点两个负数大小的比较

  知识重点绝对值的概念

  教学过程(师生活动)设计理念

  设置情境

  引入课题星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正,①用有理数表示黄老师两次所行的路程;②如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?

  学生思考后,教师作如下说明:

  实际生活中有些问题只关注量的具体值,而与相反

  意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关;

  观察并思考:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离.

  学生回答后,教师说明如下:

  数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;

  一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|

  例如,上面的问题中|20|=20,|-10|=10显然,|0|=0这个例子中,第一问是相反意义的量,用正负

  数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义.为引入绝对值概念做准备.并使学生体

  验数学知识与生活实际的联系.

初一数学教案 篇8

  教学目标

  1.了解公式的意义,使学生能用公式解决简单的实际问题;

  2.初步培养学生观察、分析及概括的能力;

  3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。

  教学建议

  一、教学重点、难点

  重点:通过具体例子了解公式、应用公式.

  难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。

  二、重点、难点分析

  人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。

  三、知识结构

  本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。

  四、教法建议

  1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。

  2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。

  3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。

  教学设计示例

  公式

  一、教学目标

  (一)知识教学点

  1.使学生能利用公式解决简单的实际问题.

  2.使学生理解公式与代数式的关系.

  (二)能力训练点

  1.利用数学公式解决实际问题的能力.

  2.利用已知的公式推导新公式的能力.

  (三)德育渗透点

  数学来源于生产实践,又反过来服务于生产实践.

  (四)美育渗透点

  数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美.

  二、学法引导

  1.数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点

  2.学生学法:观察→分析→推导→计算

  三、重点、难点、疑点及解决办法

  1.重点:利用旧公式推导出新的图形的计算公式.

  2.难点:同重点.

  3.疑点:把要求的图形如何分解成已经熟悉的图形的和或差.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪,自制胶片。

  六、师生互动活动设计

  教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式.

  七、教学步骤

  (一)创设情景,复习引入

  师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开始就参与课堂教学,使学生在后面利用公式计算感到不生疏.

  在学生说出几个公式后,师提出本节课我们应在小学学习的基础上,研究如何运用公式解决实际问题.

  板书:公式

  师:小学里学过哪些面积公式?

  板书:S=ah

  附图

  (出示投影1)。解释三角形,梯形面积公式

  【教法说明】让学生感知用割补法求图形的面积。

  (二)探索求知,讲授新课

  师:下面利用面积公式进行有关计算

  (出示投影2)

  例1如图是一个梯形,下底(米),上底,高,利用梯形面积公式求这个梯形的面积S。

  师生共同分析:1.根据梯形面积计算公式,要计算梯形面积,必须知道哪些量?这些现在知道吗?

  2.题中“M”是什么意思?(师补充说明厘米可写作cm,千米写作km,平方厘米写作等)

  学生口述解题过程,教师予以指正并指出,强调解题的规范性.

  【教法说明】1.通过分析,引导学生在一个实际问题中,必须明确哪些量是已知的,哪些量是未知的,要解决这个问题,必须已知哪些量.2.用公式计算时,要先写出公式,然后代入计算,养成良好的解题习惯.

  (出示投影3)

  例2如图是一个环形,外圆半径,内圆半径求这个环形的面积

  学生讨论:1.环形是怎样形成的.2.如何求环形的面积讨论后请学生板演,其他同学做在练习本上,教育巡回指导.

  评讲时注意1.如果有学生作了简便计算,则给予表扬和鼓励:如果没有学生这样计算,则启发学生这样计算.

  2.本题实际上是由圆的面积公式推导出环形面积公式.

  3.进一步强调解题的规范性

  教法说明,让学生做例题,学生能自己评判对与错,优与劣,是获取知识的一个很好的途径.

  测试反馈,巩固练习

  (出示投影4)

  1.计算底,高的三角形面积

  2.已知长方形的长是宽的1.6倍,如果用a表示宽,那么这个长方形的周长是多少?当时,求t

  3.已知圆的半径,,求圆的周长C和面积S

  4.从A地到B地有20千米上坡路和30千米下坡路,某车上坡时每小时走千米,下坡时每小时走千米。

  (1)求A地到B地所用的时间公式。

  (2)若千米/时,千米/时,求从A地到B地所用的时间。

  学生活动:分两次完成,每次两题,两人板演,其他同学在练习本上完成,做好后同桌交换评判,第一次可请两位基础较差的同学板演,第二次请中等层次的学生板演.

  【教法说明】面向全体,分层教学,能照顾两极,使所有的同学有所发展.

  师:公式本身是用等号联接起来的代数式,许多公式在实际中都有重要的用处,可以用公式直接计算还可以利用公式推导出新的公式.

  八、随堂练习

  (一)填空

  1.圆的半径为R,它的面积________,周长_____________

  2.平行四边形的底边长是,高是,它的面积_____________;如果,,那么_________

  3.圆锥的底面半径为,高是,那么它的体积__________如果,,那么_________

  (二)一种塑料三角板形状,尺寸如图,它的厚度是,求它的体积V,如果,,,V是多少?

  九、布置作业

  (一)必做题课本第22页1、2、3第23页B组1

  (二)选做题课本第22页5B组2

  十、板书设计

  附:随堂练习答案

  (一)1.2.3.

  (二)

  作业答案

  必做题1.

  2.3.

  .

  选做题5.

  探究活动

  根据给出的数据推导公式。

初一数学教案 篇9

  教学目标:

  1、通过解题,使学生了解到数学是具有趣味性的。

  2、培养学生勤于动脑的习惯。

  教学过程:

  一、出示趣味题

  师:老师这里有一些有趣的问题,希望大家开动脑筋,积极思考。

  1、小卫到文具店买文具,他买毛笔用去了所带钱的一半,买铅笔用去了剩下钱的一半,最后用去剩下的8分,问小卫原有( )钱?

  2、苹苹做加法,把一个加数22错写成12,算出结果是48,问正确结果是( )。

  3、小明做减法,把减数30写成20,这样他算出的得数比正确得数多( ),如果小明算出的结果是10,正确结果是( )。

  4、同学们种树,要把9棵树分3行种,每一行都是4棵,你能想出几种

  办法来用△表示。

  5、把一段布5米,一次剪下1米,全部剪下要( )次。

  6、李小松有10本本子,送给小刚2本后,两人本子数同样多,小刚原来

  有( )本本子。

  二、小组讨论

  三、指名讲解

  四、评价

  1、同学互评

  2、老师点评

  五、小结

  师:通过今天的学习,你有哪些收获呢?

初一数学教案 篇10

  教学目标

  (一)教学知识点

  1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.

  2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.

  3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.

  (二)能力训练要求

  1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神.

  2.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想.

  3.通过学生共同观察和讨论,培养大家的合作交流意识.

  (三)情感与价值观要求

  1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.

  2.具有初步的创新精神和实践能力.

  教学重点

  1.体会方程与函数之间的联系.

  2.理解何时方程有两个不等的实根,两个相等的实数和没有实根.

  3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.

  教学难点

  1.探索方程与函数之间的联系的过程.

  2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系.

  教学方法

  讨论探索法.

  教具准备

  投影片二张

  第一张:(记作§2.8.1A)

  第二张:(记作§2.8.1B)

  教学过程

  Ⅰ.创设问题情境,引入新课

  [师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系.当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解.

  现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?本节课我们将探索有关问题。

  通过学生的讨论,使学生更清楚以下事实:

  (1)分解因式与整式的乘法是一种互逆关系;

  (2)分解因式的结果要以积的形式表示;

  (3)每个因式必须是整式,且每个因式的次数都必须低于原来的多项式的次数;

  (4)必须分解到每个多项式不能再分解为止。

  活动5:应用新知

  例题学习:

  p166例1、例2(略)

  在教师的引导下,学生应用提公因式法共同完成例题。

  让学生进一步理解提公因式法进行因式分解。

  活动6:课堂练习

  1.p167练习;

  2.看谁连得准

  x2-y2(x+1)2

  9-25x2y(x-y)

  x2+2x+1(3-5x)(3+5x)

  xy-y2(x+y)(x-y)

  3.下列哪些变形是因式分解,为什么?

  (1)(a+3)(a-3)=a2-9

  (2)a2-4=(a+2)(a-2)

  (3)a2-b2+1=(a+b)(a-b)+1

  (4)2πR+2πr=2π(R+r)

  学生自主完成练习。

  通过学生的反馈练习,使教师能全面了解学生对因式分解意义的理解是否到位,以便教师能及时地进行查缺补漏。

  活动7:课堂小结

  从今天的课程中,你学到了哪些知识?掌握了哪些方法?明白了哪些道理?

  学生发言。

  通过学生的回顾与反思,强化学生对因式分解意义的理解,进一步清楚地了解分解因式与整式的乘法的互逆关系,加深对类比的数学思想的理解。

  活动8:课后作业

  课本p170习题的第1、4大题。

  学生自主完成

  通过作业的巩固对因式分解,特别是提公因式法理解并学会应用。

  板书设计(需要一直留在黑板上主板书)

  15.4.1提公因式法例题

  1.因式分解的定义

  2.提公因式法

初一数学教案 篇11

  课型:新课: 备课人:韩贺敏 审核人:霍红超

  学习目标:1.理解平行线的意义两条直线的两种位置关系;

  2.理解并掌握平行公理及其推论的内容;

  3.会根据几何语句画图,会用直尺和三角板画平行线;

  学习重点:探索和掌握平行公理及其推论.

  学习难点:对平行线本质属性的理解,用几何语言描述图形的性质

  一、学习过程:预习提问

  两条直线相交有几个交点?

  平面内两条直线的位置关系除相交外,还有哪些呢?

  (一)画平行线

  1、 工具:直尺、三角板

  2、 方法:一"落";二"靠";三"移";四"画"。

  3、请你根据此方法练习画平行线:

  已知:直线a,点B,点C.

  (1)过点B画直线a的平行线,能画几条?

  (2)过点C画直线a的平行线,它与过点B的平行线平行吗?

  (二)平行公理及推论

  1、思考:上图中,①过点B画直线a的平行线,能画 条;

  ②过点C画直线a的平行线,能画 条;

  ③你画的直线有什么位置关系? 。

  ②探索:如图,P是直线AB外一点,CD与EF相交于P.若CD与AB平行,则EF与AB平行吗?为什么?

  二、自我检测:(一)选择题:

  1、下列推理正确的是 ( )

  A、因为a//d, b//c,所以c//d B、因为a//c, b//d,所以c//d

  C、因为a//b, a//c,所以b//c D、因为a//b, d//c,所以a//c

  2.在同一平面内有三条直线,若其中有两条且只有两条直线平行,则它们交点的个数为( )

  A.0个 B.1个 C.2个 D.3个

  (二)填空题:

  1、在同一平面内,与已知直线L平行的直线有 条,而经过L外一点,与已知直线L平行的直线有且只有 条。

  2、在同一平面内,直线L1与L2满足下列条件,写出其对应的位置关系:

  (1)L1与L2 没有公共点,则 L1与L2 ;

  (2)L1与L2有且只有一个公共点,则L1与L2 ;

  (3)L1与L2有两个公共点,则L1与L2 。

  3、在同一平面内,一个角的两边与另一个角的两边分别平行,那么这两个角的大小关系是 。

  4、平面内有a 、b、c三条直线,则它们的交点个数可能是 个。

  三、CD⊥AB于D,E是BC上一点,EF⊥AB于F,∠1=∠2.试说明∠BDG+∠B=180°.

初一数学教案 篇12

  一、教学目标

  1、知识与技能(1)、借助数轴,初步理解绝对值的概念,能求一个数的绝对值,会利用绝对值比较两个

  负数的大小。(2)、通过应用绝对值解决实际问题,体会绝对值的意义和作用。2、过程与方法目标:(1)、通过运用“||”来表示一个数的绝对值,培养学生的数感和符号感,达到发展学

  生抽象思维的目的(2)、通过探索求一个数绝对值的方法和两个负数比较大小方法的过程,让学生学会通过

  观察,发现规律、总结方法,发展学生的实践能力,培养创新意识;(3)、通过对“做一做”“议一议”“试一试”的交流和讨论,培养学生有条理地用语言

  表达解决问题的方法;通过用绝对值或数轴对两个负数大小的比较,让学生学会尝试评价两种不同方法之间的差异。

  3、情感态度与价值观:

  借助数轴解决数学问题,有意识地形成“脑中有图,心中有数”的数形结合思想。通过“做一做“议一议”“试一试”问题的思考及回答,培养学生积极参与数学活动,并在数学活动中体验成功,锻炼学生克服困难的意志,建立自信心,发展学生清晰地阐述自己观点的能力以及培养学生合作探索、合作交流、合作学习的新型学习方式。

  二、教学重点和难点

  理解绝对值的概念;求一个数的绝对值;比较两个负数的大小。

  三、教学过程:

  1、教师检查组长学案学习情况,组长检查组员学案学习情况。(约5分钟)2.在组长的组织下进行讨论、交流。(约5分钟)3、小组分任务展示。(约25分钟)4、达标检测。(约5分钟)5、总结(约5分钟)

  四、小组对学案进行分任务展示

  (一)、温故知新:

  前面我们已经学习了数轴和数轴的三要素,请同学们回想一下什么叫数轴?数轴的三要素什么?

  (二)小组合作交流,探究新知

  1、观察下图,回答问题:(五组完成)

  大象距原点多远?两只小狗分别距原点多远?

  归纳:在数轴上,一个数所对应的点与原点的距离叫做这个数的。一个数a的绝对值记作:.

  4的绝对值记作,它表示在上与的距离,所以|4|=。

  2、做一做:

  (1)、求下列各数的绝对值:(四组完成)-1.5,0,-7,2(2)、求下列各组数的绝对值:(一组完成)

  (1)4,-4;(2)0.8,-0.8;

  从上面的结果你发现了什么?

  3、议一议:(八组完成)

  (1)|+2|=,

  1=,|+8.2|=;5(2)|-3|=,|-0.2|=,|-8|=.(3)|0|=;

  你能从中发现什么规律?

  小结:正数的绝对值是它,负数的绝对值是它的,0的绝对值是。

  4、试一试:(二组完成)

  若字母a表示一个有理数,你知道a的绝对值等于什么吗?

  (通过上题例子,学生归纳总结出一个数的绝对值与这个数的关系。)

  5:做一做:(三组完成)

  1、(1)在数轴上表示下列各数,并比较它们的大小:

  -3,-1

  (2)求出(1)中各数的绝对值,并比较它们的大小

  (3)你发现了什么?

  2、比较下列每组数的大小。

  (1)-1和–5;(五组完成)(2)?

  (3)-8和-3(七组完成)

  5和-2.7(六组完成)6五、达标检测:

  1:填空:

  绝对值是10的数有()

  |+15|=()|–4|=()

  |0|=()|4|=()2:判断(1)、绝对值最小的数是0。()(2)、一个数的绝对值一定是正数。()(3)、一个数的绝对值不可能是负数。()

  (4)、互为相反数的两个数,它们的绝对值一定相等。()(5)、一个数的绝对值越大,表示它的点在数轴上离原点越近。()

  六、总结:

  1绝对值:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值.

  2.绝对值的性质:正数的绝对值是它本身;

  负数的绝对值是它的相反数;0的绝对值是0.

  因为正数可用a0表示,负数可用a0表示,所以上述三条可表述成:(1)如果a0,那么|a|=a(2)如果a0,那么|a|=-a(3)如果a=0,那么|a|=0

  3、会利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小.

  七、布置作业

  P50页,知识技能第1,2题.

  七年级数学教案3

  ●教学内容

  七年级上册课本11----12页1.2.4绝对值

  ●教学目标

  1.知识与能力目标:借助于数轴,初步理解绝对值的概念,能求一个数的绝对值,初步学会求绝对值等于某一个正数的有理数。

  2.过程与方法目标:通过从数形两个侧面理解绝对值的意义,初步了解数形结合的思想方法。通过应用绝对值解决实际问题,体会绝对值的意义。

  3.情感态度与价值观:通过应用绝对值解决实际问题,培养学生浓厚的学习兴趣,使学生能积极参与数学学习活动,对数学有好奇心与求知欲。

  ●教学重点与难点

  教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。

  教学难点:绝对值定义的得出、意义的理解,以及求绝对值等于某一个正数的有理数。

  ●教学准备

  多媒体课件

  ●教学过程

  一、创设问题情境

  1、两只小狗从同一点O出发,在一条笔直的街上跑,一只向右跑10米到达A点,另一只向左跑10米到达B点。若规定向右为正,则A处记作?__________,B处记作__________。

  以O为原点,取适当的单位长度画数轴,并标出A、B的位置。

  (用生动有趣的引例吸引学生,即复习了数轴和相反数,又为下文作准备)。

  2、这两只小狗在跑的过程中,有没有共同的地方?在数轴上的A、B两点又有什么特征?(从形和数两个角度去感受绝对值)。

  3、在数轴上找到-5和5的点,它们到原点的距离分别是多少?表示-和的点呢?

  小结:在实际生活中,有时存在这样的情况,无需考虑数的正负性质,比如:在计算小狗所跑的路程中,与小狗跑的方向无关,这时所走的路程只需用正数,这样就必须引进一个新的概念?———绝对值。

  二、建立数学模型

  1、绝对值的概念

  (借助于数轴这一工具,师生共同讨论,引出绝对值的概念)

  绝对值的几何定义:一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。比如:-5到原点的距离是5,所以-5的绝对值是5,记|-5|=5;5的绝对值是5,记做|5|=5。

  注意:①与原点的关系②是个距离的概念

  2..练习1:请学生举一个生活中的实际例子,说明解决有的问题只需考虑的数绝对值。[温度上升了5度,用+5表示的话,那么下降了5度,就用-5表示,如果我们不去考虑它的意义(即:上升还是下降),只考虑数量(即:温度)的变化,我们可以说:温度的变化都是5度。银行存款,如果存入100元用+100表示,那么取出100元就用-100表示,如果我们不去考虑它的意义(即:存入还是取出),只考虑数量的多少,我们可以说:金额都是100元。]

  (通过应用绝对值解决实际问题,体会绝对值的意义与作用,感受数学在生活中的价值。)

  三、应用深化知识

  1、例题求解

  例1、求下列各数的绝对值

  -1.6,,0,-10,+10

  2、根据上述题目,让学生归纳总结绝对值的特点。(教师进行补充小结)

  特点:1、一个正数的绝对值是它本身

  2、一个负数的绝对值是它的相反数

  3、零的绝对值是零

  4、互为相反数的两个数的绝对值相等

  3.出示题目

  (1)-3的符号是_______,绝对值是______;

  (2)+3的符号是_______,绝对值是______;

  (3)-6.5的符号是_______,绝对值是______;

  (4)+6.5的符号是_______,绝对值是______;

  学生口答。

  师:上面我们看到任何一个有理数都是由符号,和绝对值两个部分构成。现在老师有一个问题想问问大家,在上一节课中我们规定只有符号不同的两个数称互为相反数。那么大家在今天学习了绝对值以后,你能给相反数一个新的解释吗?

  5、练习3:回答下列问题

  ①一个数的绝对值是它本身,这个数是什么数?

  ②一个数的绝对值是它的相反数,这个数是什么数?

  ③一个数的绝对值一定是正数吗?

  ④一个数的绝对值不可能是负数,对吗?

  ⑤绝对值是同一个正数的数有两个,它们互为相反数,这句话对吗?

  (由学生口答完成,进一步巩固绝对值的概念)

  6、例2.求绝对值等于4的数

  (让学生考虑这样的数有几个,是怎样得出这个结果的呢?对后一个问题由学生去讨论,启发学生从数与形两个方面考虑,培养学生的发散思维能力。)

  分析:

  ①从数字上分析

  ∵|+4|=4,|-4|=4∴绝对值等于4的数是+4和-4画一个数轴(如下图)

  ②从几何意义上分析,画一个数轴(如下图)

  因为数轴上到原点的距离等于4个单位长度的点有两个,即表示+4的点P和表示-4的点M

  所以绝对值等于4的数是+4和-4.

  6、练习:做书上12页课内练习1、2两题。

  四、归纳小结

  1、本节课我们学习了什么知识?

  2、你觉得本节课有什么收获?

  3、由学生自行总结在自主探究,合作学习中的体会。

  五、课后作业

  1、让学生去寻找一些生活中只考虑绝对值的实际例子。

  2、课本15页的作业题。

初一数学教案 篇13

  教学目标:

  知识与技能目标:

  通过对实际问题的分析,使学生进一步体会方程组是刻画现实世界的有效数学模型,初步掌握列二元一次方程组解应用题.初步体会解二元一次方程组的基本思想“消元”。

  培养学生列方程组解决实际问题的意识,增强学生的数学应用能力。

  过程与方法目标:

  经历和体验列方程组解决实际问题的过程,进一步体会方程(组)是刻画现实世界的有效数学模型。

  情感态度与价值观目标:

  1.进一步丰富学生数学学习的成功体验,激发学生对数学学习的好奇心,进一步形成积极参与数学活动、主动与他人合作交流的意识.

  2.通过"鸡兔同笼",把同学们带入古代的数学问题情景,学生体会到数学中的"趣";进一步强调课堂与生活的联系,突出显示数学教学的实际价值,培养学生的人文精神。重点:

  经历和体验列方程组解决实际问题的过程;增强学生的数学应用能力。

  难点:

  确立等量关系,列出正确的二元一次方程组。

  教学流程:

  课前回顾

  复习:列一元一次方程解应用题的一般步骤

  情境引入

  探究1:今有鸡兔同笼,

  上有三十五头,

  下有九十四足,

  问鸡兔各几何?

  “雉兔同笼”题:今有雉(鸡)兔同笼,上有35头,下有94足,问雉兔各几何?

  (1)画图法

  用表示头,先画35个头

  将所有头都看作鸡的,用表示腿,画出了70只腿

  还剩24只腿,在每个头上在加两只腿,共12个头加了两只腿

  四条腿的是兔子(12只),两条腿的是鸡(23只)

  (2)一元一次方程法:

  鸡头+兔头=35

  鸡脚+兔脚=94

  设鸡有x只,则兔有(35-x)只,据题意得:

  2x+4(35-x)=94

  比算术法容易理解

  想一想:那我们能不能用更简单的方法来解决这些问题呢?

  回顾上节课学习过的二元一次方程,能不能解决这一问题?

  (3)二元一次方程法

  今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?

  (1)上有三十五头的意思是鸡、兔共有头35个,

  下有九十四足的意思是鸡、兔共有脚94只.

  (2)如设鸡有x只,兔有y只,那么鸡兔共有(x+y)只;

  鸡足有2x只;兔足有4y只.

  解:设笼中有鸡x只,有兔y只,由题意可得:

  鸡兔合计头xy35足2x4y94

  解此方程组得:

  练习1:

  1.设甲数为x,乙数为y,则“甲数的二倍与乙数的一半的和是15”,列出方程为_2x+05y=15

  2.小刚有5角硬币和1元硬币各若干枚,币值共有六元五角,设5角有x枚,1元有y枚,列出方程为05x+y=65.

  合作探究

  探究2:以绳测井。若将绳三折测之,绳多五尺;若将绳四折测之,绳多一尺。绳长、井深各几何?

  题目大意:用绳子测水井深度,如果将绳子折成三等份,一份绳长比井深多5尺;如果将绳子折成四等份,一份绳长比井深多1尺。问绳长、井深各是多少尺?

  找出等量关系:

  解:设绳长x尺,井深y尺,则由题意得

  x=48

  将x=48y=11。

  所以绳长4811尺。

  想一想:找出一种更简单的创新解法吗?

  引导学生逐步得出更简单的方法:

  找出等量关系:

  (井深+5)×3=绳长

  (井深+1

  解:设绳长x尺,井深y尺,则由题意得

  3(y+5)=x

  4(y+1)=x

  x=48

  y=11

  所以绳长48尺,井深11尺。

  练习2:甲、乙两人赛跑,若乙先跑10米,甲跑5秒即可追上乙;若乙先跑2秒,则甲跑4秒就可追上乙.设甲速为x米/秒,乙速为y米/秒,则可列方程组为(B).

  归纳:

  列二元一次方程解决实际问题的一般步骤:

  审:审清题目中的等量关系.

  设:设未知数.

  列:根据等量关系,列出方程组.

  解:解方程组,求出未知数.

  答:检验所求出未知数是否符合题意,写出答案。

  想了解更多初中教案网的资讯,请访问: 初中教案

本文来源:https://www.liuxue86.com/a/4875344.html
延伸阅读
以下是我们为您提供的有关“初中英语课件教案”的重要信息,欢迎您阅读本篇文章。老师在教学前提前准备好教案和课件,教案课件内容是老师自主设计的,这是提高学生学习效果的重要手段。初中英语
2023-05-20
每位教师在开学前都需要准备教案课件,按要求完成。良好的教案和课件是课堂教学成功的关键。一个优秀的教案和课件应该具备哪些特点呢?以下是最新的“初中物理教案”范文,供大家参考!初中物理
2023-05-19
这篇“功率初中教案”的文献充满了巧思和见解,无疑是很值得珍藏的。老师在上课前需加工教案课件,制作精良的教案课件是每个老师必备的基本技能。好的教案和课件是增强教学质量和效率的保证。因
2023-05-18
教师要以东风化雨之情,春泥护花之意,培育人类的花朵,绘制灿烂的春天,教师要准备好教案,这是每堂课的要求。教案可以帮助教师科学、合理地支配课堂时间。以下为出国留学网编辑为你收集整理的
2023-05-17
教师在授课前准备教案课件是展示工作责任感的一种方式,但这并不意味着教案课件可以草草写就。教案是教师在教育和教学实践中必不可少的工具,好的教案课件应该怎样编写呢?经过精心策划,“初中
2023-05-16
初一数学教案(篇1)正数和负数(1)教学目标1,整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;2,能区分两种不同意义的量,会用符号表示正数和负数;3,体验
2023-03-27
相信你应该喜欢出国留学网小编整理的初中数学人教版教案,供大家借鉴和使用,希望大家分享。每个老师在上课前会带上自己教案课件,所以在写的时候老师们就要花点时间咯。要知道老师写好教案课件
2023-02-06
初中数学教案篇1一.一元一次不等式组:关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。一元一次不等式组的概念可以从以下几个方面理解:(1)组成不等式组的不等
2023-04-28
在教师的日常工作中,教案课件也是必不可少的教学辅助工具之一,但要注意在教案课件中的知识点设计要合理。学生的反馈是教学过程中必不可少的组成部分。本篇文章选取了关于“初二数学教案”的最
2023-05-15
用全心忘我育人方为优秀,教师要准备好一份优秀的教案。教案可以帮助老师主动掌握自己的教学节奏,把控好教学时间。出国留学网的编辑特意收集和整理了初中数学教案,或许你能从中找到需要的内容
2023-02-25