出国留学网

目录

解直角三角形课件

字典 |

2023-05-27 18:36

|

推荐访问

直角三角形课件

【 liuxue86.com - 实用资料 】

  在给学生授课之前,教师会提前准备好教案课件,里面的内容都是由教师自己完善的。编写教案时必须考虑如何整合和利用教学资源,这样才能形成优秀的教案课件。那么,什么样的教案才能称之为好教案课件呢?通过本文的阅读,我们对于“解直角三角形课件”有了更加深入的认识,建议大家将本页和本站收藏起来,方便今后查阅。

解直角三角形课件 篇1

  教学建议

  1.知识结构:

   本小节主要学习解直角三角形的概念,直角三角形中除直角外的五个元素之间的关系以及直角三角形的解法.

  2.重点和难点分析:

   教学重点和难点:直角三角形的解法.

  本节的重点和难点是直角三角形的解法.为了使学生熟练掌握直角三角形的解法,首先要使学生知道什么叫做解直角三角形,直角三角形中三边之间的关系,两锐角之间的关系,边角之间的关系.正确选用这些关系,是正确、迅速地解直角三角形的关键.

  3. 深刻认识锐角三角函数的定义,理解三角函数的表达式向方程的转化.

  锐角三角函数的定义:

  实际上分别给了三个量的关系:a、b、c是边的长、、和是由用不同方式来决定的三角函数值,它们都是实数,但它与代数式的不同点在于三角函数的值是有一个锐角的数值参与其中.

  当这三个实数中有两个是已知数时,它就转化为一个一元方程,解这个方程,就求出了一个直角三角形的未知的元素.

  如:已知直角三角形ABC中,,求BC边的长.

   

  画出图形,可知边AC,BC和三个元素的关系是正切函数(或余切函数)的定义给出的,所以有等式

  ,

  由于,它实际上已经转化了以BC为未知数的代数方程,解这个方程,得

  .

  即得BC的长为.

  又如,已知直角三角形斜边的长为35.42cm,一条直角边的长29.17cm,求另一条边所对的锐角的大小.

   

  画出图形,可设中,,于是,求的大小时,涉及的三个元素的关系是

  也就是

  这时,就把以为未知数的代数方程转化为了以为未知数的方程,经查三角函数表,得

  .

  由此看来,表达三角函数的定义的4个等式,可以转化为求边长的方程,也可以转化为求角的方程,所以成为解三角形的重要工具.

  4. 直角三角形的解法可以归纳为以下4种,列表如下:

   

  5. 注意非直角三角形问题向直角三角形问题的转化

  由上述(3)可以看到,只要已知条件适当,所有的直角三角形都是可解的.值得注意的是,它不仅使直角三角形的计算问题得到彻底的解决,而且给非直角三角形图形问题的解决铺平了道路.不难想到,只要能把非直角三角形的图形问题转化为直角三角形问题,就可以通过解直角三角形而获得解决.请看下例.

  例如,在锐角三角形ABC中,,求这个三角形的未知的边和未知的角(如图)

   

  这是一个锐角三角形的解法的问题,我们只需作出BC边上的高(想一想:作其它边上的高为什么不好.),问题就转化为两个解直角三角形的问题.

  在Rt中,有两个独立的条件,具备求解的条件,而在Rt中,只有已知条件,暂时不具备求解的条件,但高AD可由解时求出,那时,它也将转化为可解的直角三角形,问题就迎刃而解了.解法如下:

  解:作于D,在Rt中,有

  ;

  又,在Rt中,有

  ∴

  又,

  ∴ 

  于是,有

  由此可知,掌握非直角三角形的图形向直角三角形转化的途径和方法是十分重要的,如

  (1)作高线可以把锐角三角形或钝角三角形转化为两个直角三角形.

   

  (2)作高线可以把平行四边形、梯形转化为含直角三角形的图形.

   

  (3)连结对角线,可以把矩形、菱形和正方形转化为含直角三角形的图形.

   

  (4)如图,等腰三角形AOB是正n边形的n分之一.作它的底边上的高,就得到直角三角形OAM,OA是半径,OM是边心距,AB是边长的一半,锐角.

   

  6. 要善于把某些实际问题转化为解直角三角形问题.

  很多实际问题都可以归结为图形的计算问题,而图形计算问题又可以归结为解直角三角形问题.

  我们知道,机器上用的螺丝钉问题可以看作计算问题,而圆柱的侧面可以看作是长方形围成的(如图).螺纹是以一定的角度旋转上升,使得螺丝旋转时向前推进,问直径是6mm的螺丝钉,若每转一圈向前推进1.25mm,螺纹的初始角应是多少度多少分?

   

  据题意,螺纹转一周时,把侧面展开可以看作一个直角三角形,直角边AC的长为

  ,

  另一条直角边为螺钉推进的距离,所以

  ,

  设螺纹初始角为,则在Rt中,有

  ∴.

  即,螺纹的初始角约为 .

   这个例子说明,生产和生活中有很多实际问题都可以抽象为一个解直角三角形问题,我们应当注意培养这种把数学知识应用于实际生活的意识和能力.

  一、教学目标

  1.使学生掌握直角三角形的边角关系,会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形;

  2.通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力;

   3.通过本节的.学习,向学生渗透数形结合的数学思想,培养他们良好的学习习惯.

   二、重点·难点·疑点及解决办法

  1.重点:直角三角形的解法。

  2.难点:三角函数在解直角三角形中的灵活运用。

  3.疑点:学生可能不理解在已知的两个元素中,为什么至少有一个是边。

  4.解决办法:设置疑问,引导学生主动发现方法与途径,解决重难点,以相似三角形知识为背景解决疑点。

   三、教学步骤

  (一)明确目标

  1.在三角形中共有几个元素?

  2.如图直角三角形ABC中,这五个元素间有哪些等量关系呢?

  (1)边角之间关系

   

  (2)三边之间关系

  (勾股定理)

  (3)锐角之间关系  。

  以上三点正是解直角三角形的依据,通过复习,使学生便于应用。

  (二)整体感知

   教材在继锐角三角函数后安排解直角三角形,目的是运用锐用三角函数知识,对其加以复习巩固。同时,本课又为以后的应用举例打下基础。因此在把实际问题转化为数学问题之后,就是运用本课——解直角三角形的知识来解决的。综上所述,解直角三角形一课在本章中是起到承上启下作用的重要一课。

   (三)教学过程()

   1.我们已掌握Rt的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素。这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢,激发了学生的学习热情。

  2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形)。

  3.例题

  【例1】  在中,为直角,所对的边分别为,且,解这个三角形。

  解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用。因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想。其次,教师组织学生比较各种方法中哪些较好,选一种板演。

  解:(1),

  (2),

  ∴

    

  (3)

  ∴

    

  完成之后引导学生小结“已知一边一角,如何解直角三角形?”

  答:先求另外一角,然后选取恰当的函数关系式求另两边。计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底。

  【例2】  在Rt中,,解这个三角形。

  在学生独立完成之后,选出最好方法,教师板书。

  解:(1),

  查表得;

  (2)

  (3),

  ∴。

  注意:例1中的b和例2中的c都可以利用勾股定理来计算,这时要查平方表和平方根表,这样做有时会比上面用含四位有效数字的数乘(或除)以另一含四位有效数字的数要方便一些。但先后要查两次表,并作一次加法(或减法)或者使用计算器求平方、平方根及三角正数值等。

  4.巩固练习

  解直角三角形是解实际应用题的基础,因此必须使学生熟练掌握。为此,教材配备了练习P.23中1、2练习1针对各种条件,使学生熟练解直角三角形;练习2代入数据,培养学生运算能力。

  [参考答案]

  1.(1);

  (2)由求出或;

  (3),

  或;

  (4)或。

  2.(1);

  (2)。

   说明:解直角三角形计算上比较繁琐,条件好的学校允许用计算器。但无论是否使用计算器,都必须写出解直角三角形的整个过程。要求学生认真对待这些题目,不要马马虎虎,努力防止出错,培养其良好的学习习惯。

  (四)总结扩展

  1.请学生小结:在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边),就可以求出另三个元素。

  2.幻灯片出示图表,请学生完成

   

   四、布置作业

  教材P.32习题6.4A组3。

  [参考答案]

  3.;

   五、板书设计

   


解直角三角形课件 篇2

  二、基础知识:

  1、在倾斜角为300的山坡上种树,要求相邻两棵数间的水平距离为3米,

  2、升国旗时,某同学站在离旗杆底部20米处行注目礼,当国旗升至旗

  杆顶端时,该同学视线的仰角为300,若双眼离地面1.5米,则旗杆

  3、如图:B、C是河对岸的两点,A是对岸岸边一点,测得∠ACB=450,

  BC=60米,则点A到BC的距离是 米。

  3、如图所示:某地下车库的入口处有斜坡AB,其坡度I=1:1.5,

  则AB=

  三、典型例题:

  例2、右图为住宅区内的两幢楼,它们的高AB=CD=30米,两楼间的距

  线的夹角为300时,求甲楼的影子在乙楼上有多高?

  例3、如图所示:某货船以20海里/时的速度将一批重要货物由A处运往正西方的B处,

  经过16小时的航行到达,到达后必须立即卸货,此时接到气象部门通知,一台

  风中心正以40海里/时的速度由A向北偏西600方向移动,距离台风中心200海

  里的圆形区域(包括边界)均会受到影响。

  (1)问B处是否会受到台风的影响?请说明理由。

  (2)为避免受到台风的影响,该船应该在多少小时内卸完货物?

  四、巩固提高:

  的.位置升高 米。

  2、如图:A市东偏北600方向一旅游景点M,在A市东偏北300的

  公路上向前行800米到达C处,测得M位于C的北偏西150,

  A、sin450 B、sin600 C、cos300 D、cos600

  A向外移动到A,使梯子的底端A到墙根O的距离等于3米,

  5、如图所示:某学校的教室A处东240米的O点处有一货物,经过O点沿北偏西600

  方向有一条公路,假定运货车辆形成的噪音影响范围在130米以内。

  (1)通过计算说明,公路上车辆的噪音是否对学校造成影响?

  (2)为了消除噪音对学校的影响,计划在公路边修一段隔音墙,请你计算隔音墙的

解直角三角形课件 篇3

  一、教材分析

  (一)教材地位

  直角三角形是最简单、最基本的几何图形,在生活中随处可见,是研究其他图形的基础,在解决实际问题中也有着广泛的应用、《解直角三角形的应用》是第28章锐角三角函数的延续,渗透着数形结合思想、方程思想、转化思想。因此本课无论是在本章还是在整个初中数学教材中都具有重要的地位。

  (二)教学目标

  这节课,我说面对的是初三学生,从人的认知规律看,他们已经具有初步的探究能力和逻辑思维能力。但直角三角形的应用题型较多,他们对建立直角三角形模型上可能会有困难。针对上述学生情况,确定本节课的教学目标如下:

  1、通过观察、交流等活动,会建立直角三角形模型。

  2、经历解直角三角形中作高的过程,懂得解直角三角形的三种基本模型,进一步渗透数形结合思想、方程思想、转化(化归)思想,激发学生的学习兴趣。

  (三)重点难点

  1、重点:熟练运用有关三角函数知识。

  2、难点:如何添作辅助线解决实际问题。

  二、教法学法

  1、教法:采用“研究体验式”创新教学法,这其实是“学程导航”模式下的一种教法,主要是教给学生一种学习方法,使他们学会自己主动探索知识并发现规律。

  2、学法:主要是发挥学生的主观能动性。学生在课前做好预习作业,课堂上则要积极参与讨论,课后根据老师布置的课外作业进行巩固和迁移。

  三、教学程序

  (一)准备阶段

  我主要的准备工作是备好课,在上课前一天布置学生做好预习作业。

  预习作业:

  1、如图,Rt⊿ABC中,你知道∠A的哪几种锐角三角函数?能给出定义吗?

  2、填表:锐角α三角函数

  3、已知:从热气球A看一栋高楼顶部的仰角α为300,看这栋高楼底部的俯角β为600,若热气球与高楼的水平距离为m,求这栋高楼有多高?

  4、如图:AB=200m,在A处测得点C在北偏西300的方向上,在B处测得点C在北偏西600的方向上,你能求出C到AB的距离吗?

  5、如图:梯形ABCD中,BC∥AD,AB=13,且tan∠BAE=,求BE的长。

  (二)课堂教学过程

  1、预习作业的交流

  小组交流预习作业并由学生代表展示。

  2、新知探究

  (1)教师出示问题

  1、如图:要在木里县某林场东西方向的两地之间修一条公路MN。已知点C周围200米范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东450方向上,从A向东走600米到达B处,测得C在点B的北偏西600方向上。问:MN是否穿过原始森林保护区?为什么?

  追问:你还能求出其他问题吗?若提不出问题,可给出问题:若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?

  (2)出示问题

  2、如图,一艘轮船以每小时20千米的速度沿正北方向航行,在A处测得灯塔C在北偏西300方向,航行2小时后到达B处,在B处测得灯塔C在北偏西600方向。当轮船到达灯塔C的正东方向D处时,求此时轮船与灯塔C的距离(结果保留根号)。

  追问:如果改变若干条件,你能设计出其他问题吗?

  (3)出示问题

  3、气象台发布的卫星云图显示,代号为W的台风在某海岛(设为点O)的南偏东450方向的B点生成,测得OB=km,台风中心从B点以40km/h的速度向正北方向移动。经5h后到达海面上的点C处,因受气旋影响,台风中心从点C开始以30km/h的速度向北偏西600方向继续移动。以O为原点建立如图所示的直角坐标系。

  如:(1)台风中心生成点B的坐标为,台风中心转折点C的坐标为(结果保留根号)。

  (2)已知距台风中心20km的范围内均会受到台风的侵袭。如果某城市(设为点A)位于O的正北方向且处于台风中心的移动路线上,那么台风从生成到最初侵袭该城要经过多长时间?

  3、巩固练习

  飞机在高空中的A处测得地面C的俯角为450,水平飞行2km,再测其俯角为300,求飞机飞行的高度。(精确到0.1km,参考数据:1.73)

  4、课堂小结

  请学生围绕下列问题进行反思总结:

  (1)解直角三角形有哪些基本模型?

  (2)本节课涉及到哪些数学思想?

  (3)你觉得如何解直角三角形的实际问题?

  5、布置作业

  复习第29章《投影与视图》具体见试卷

  6、课堂检测

  1、如图,直升飞机在高为200米的大楼AB左侧P点处,测得大楼的顶部仰角为45°,测得大楼底部俯角为30°,求飞机与大楼之间的水平距离。

  2、如图,直升飞机在高为200米的大楼AB上方P点处,从大楼的顶部和底部测得飞机的仰角为30°和45°,求飞机的高度PO。

  3、如图所示,某水库大坝的横断面是梯形,坝顶宽AD=2.5m,坝高4m,背水坡AB的坡度是1︰1,迎水坡CD的坡度1︰1.5,求坝底宽BC。

  四、设计思路

  本节课通过预习作业中3、4、5三个问题,引出了解直角三角形的三种基本模型,说明了解直角三角形应用的广泛性,从而体现了学习直角三角形应用知识的必要性。教学中坚持以学生为主体,注重所学内容与现实生活的联系,注重使学生经历观察、交流等探索过程。并通过追问与设计问题的形式,让学生解直角三角形的任务中发现了新问题,并让学生带着问题探索、交流,在思考中产生新认识,获得新的提高。在突破难点的同时培养学生勤于思考,勇于探索的精神,增加学生的学习兴趣和享受成功的喜悦。

解直角三角形课件 篇4

  元素,元素符号初中三年级教案来源:考卷网日期:-06-02 08:42:41点击:110

  知识目标:了解元素概念的涵义及元素符号的表示意义;学会元素符号的正确写法;了解并记忆常见的24种元素符号。理解单质和化合物的概念。理解氧化物的概念。

  教学重难点重点:元素概念的形成及理解。难点:概念之间的区别与联系。

  教材分析:本节要求学生学习的概念有元素、单质、化合物、氧化物等,而且概念比较抽象,需要学生记忆常见的元素符号及元素名称也比较多,学生对这些知识的掌握程度将是初中化学的学习一个分化点。这节课是学生学好化学的基础课,所以在教学中要多结合实例,多做练习,使学生在反复实践中去加深理解和巩固,是所学的化学用语、概念得到比较清晰的对比、区分和归类。

  化学用语的教学:元素符号是化学学科重要的基本的化学用语,必须将大纲中规定要求记住的常见元素符号记牢,为以后的学习打下坚实的基础。元素符号的读法、写法和用法,它需要学生直接记忆并在以后的运用中直接再现的知识和技能。教学中应最好采用分散记忆法,在此过程中,进行元素符号发展简史的探究活动,课上小组汇报。这样既增加了学生的兴趣、丰富了知识面,又培养了学生的查阅资料及表达能力。

  关于元素概念的教学元素的概念比较抽象,在教学时应从具体的物质着手,使他们知道不同物质里可以含有相同种类的原子,然后再指出这些原子之所以相同:是因为它们具有相同的核电荷数,并由此引出元素的概念。

  例如:说明以下物质是怎样构成的本文摘自?氧气→氧分子→氧原子水→水分子→氧原子和氢原子二氧化碳→二氧化碳分子→氧原子和碳原子五氧化二磷→五氧化二磷→氧原子和磷原子

  这些物质分子的微粒中都含有氧原子,这些氧原子的核电荷数都是8,凡是核电荷数是8的原子都归为同一类,称氧元素。此外,把核电荷数为6的同一类原子称为碳元素;将核电荷数为15的同一类原子称为磷元素等等。这时再让学生自己归纳出元素的概念。从而也培养了学生的归纳总结能力。

  为了使学生更好地理解元素的概念,此时应及时地进行元素和原子的比较,使学生清楚元素与原子的区别与联系。注意元素作为一个宏观概念的意义及说法。关于单质和化合物的分类过程中,学生也容易出错,关键在于理解单质和化合物是纯净物这个前提下进行分类的,即它们首先必须是纯净物。

  氧气→氧分子→氧原子水→水分子→氧原子和氢原子二氧化碳→二氧化碳分子→氧原子和碳原子五氧化二磷→五氧化二磷→氧原子和磷原子

  以上这些物质分子的微粒中都含有氧原子,这些氧原子的核电荷数都是8,凡是核电荷数是8的原子都归为同一类,称氧元素。此外,把核电荷数为6的同一类原子称为碳元素;将核电荷数为15的同一类原子称为磷元素等等。

  ①定义:元素是具有相同核电荷数(即核内质子数)的一类原子的总称。

  a、判断是否为同种元素的根据是什么?b、学习元素这个概念的目的何在?c、元素与原子有什么区别和联系?

  教师引导得出结论:a、具有相同核电荷数(即质子数)是判断是否为同种元素的根据。但中子数不一定相同。b、元素是一个描述某一类原子的种类概念,在讨论物质的组成成分时,只涉及到种类的一个宏观概念,只讲种类不讲个数。c、元素与原子的区别于联系:class=Normal vAlign=top width=59 class=Normal vAlign=top width=239元素

  class=Normal vAlign=top width=244原子

  class=Normal vAlign=top width=59联系

  class=Normal vAlign=top width=239具有相同核电荷数(即核内质子数)

  的一类原子的总称。

  class=Normal vAlign=top width=244化学变化中的最小粒子

  class=Normal vAlign=top width=59区别

  class=Normal vAlign=top width=239着眼于种类,不表示个数,没有数量

  class=Normal vAlign=top width=244既表示种类,又讲个数,有数量的

  class=Normal vAlign=top width=59举例

  class=Normal vAlign=top width=239用于描述物质的宏观组成。例:水是

  成的”。

  class=Normal vAlign=top width=244用于描述物质的微观构成。例:一个

  由氢元素和氧元素所组成的”。

  ③元素的分类:金属元素、非金属元素、稀有气体元素。到目前为止,已发现的元素有一百多种,而这一百多种元素组成的物质却达三千多万种。

  (2)物质分类:

  学生阅读课本P36前三段,理解单质、化合物、氧化物的概念。

  思考讨论:我们已经学过的物质中那些是单质?哪些是化合物?哪些是氧化物?

  布置研究课题:元素的故事。分组布置任务,要求以讲故事的形式向全班汇报。

  第二课时(3)元素符号:

  ①元素的分类:金属元素:“钅”旁,汞除外非金属元素:“氵”“石”“气”旁表示其单质在通常状态下存在的状态稀有气体元素:“气”

  ③元素符号表示的意义:表示一种元素(种类):表示这种元素的一个原子(微粒):(知道一种元素,还可查出该元素的相对原子质量)

解直角三角形课件 篇5

   一、 教材简析:

  本章内容属于三角学,它的主要内容是直角三角形的边角关系及其实际应用,教材先从测量入手,给学生创设学习情境,接着研究直角三角形的边角关系---锐角三角函数,最后是运用勾股定理及锐角三角函数等知识解决一些简单的实际问题。其中前两节内容是基础,后者是重点。这主要是因为解直角三角形的知识有较多的应用。解直角三角形的知识,可以被广泛地应用于测量、工程技术和物理中,主要是用来计算距离,高度和角度。教科书中的应用题,内容比较广泛,具有综合技术教育价值,解决这类问题需要进行运算,但三角中的运算和逻辑思维是密不可分的;为了便于运算,常需要先选择公式并进行变换,同时,解直角三角形的应用题和课题学习也有利于培养学生空间想象的能力,即要求学生通过对实物的观察,或根据文字语言中的某些条件画出适合它们的图形,总之,解三角形的应用题与课后学习可以培养学生的三大数学能力和分析解决问题的能力。

  同时,解直角三角形还有利于数形结合。通过这一章的学习,学生才能对直角三角形的概念有较为完整的认识。另外有些简单的几何图形可分解为一些直角三角形的组合,从而也能用本章的知识加以处理。以后学生学习斜三角形的余弦定理,正弦定理和任意三角形的面积公式时,也要用到解直角三角形的知识。

   二、教学目的、重点、难点:

  教学目的:使学生了解解直角三角形的概念,能熟练应用解直角三角形的知识解决实际问题,培养学生把实际问题转化为数学问题的能力。

   重点:1、让学生了解三角函数的意义,熟记特殊角的三角函数值,并会用锐角三角函数解决有关问题。

   2、正确选择边与角的关系以简便的解法解直角三角形

   难点:把实际问题转化为数学问题。

  学会用数学问题来解决实际问题即是我们教学的目的也是我们教学的归宿。根据课标的要求,要尽量把解直角三角形与实际问题联系,减少单纯解三角形的习题。而要在实际问题中,要使学生养成先画图,再求解的习惯。还要引导学生合理地选择所要用的边角关系。

   三、教学目标:

   1、知识目标:

  (1)经历由情境引出问题,探索掌握有关的数学知识内容,再运用于实践的过程,培养学数学、用数学的意识与能力。

  (2)通过实例认识直角三角形的边角关系,即锐角三角函数;知道30、

  45角的三角函数值;会使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它对应的角。

  (3)运用三角函数解决与直角三角形有关的简单的实际问题。

  (4)能综合运用直角三角形的勾股定理与边角关系解决简单的实际问题、

   2、能力目标:培养学生把实际问题转化为数学问题并进行解决的能力,进而提高学生形象思维能力;渗透转化的思想。

   3、情感目标:培养学生理论联系实际,敢于实践,勇于探索的精神.

   四、、教法与学法

   1、教法的设计理念

  根据基础教育课程改革的具体目的,结合注重开放与生成,构造充满生命活力的课堂教学体系。改变课堂过于注重知识传授的倾向,强调形成积极主动的学习态度,关注学生的学习兴趣和体验,让学生主动参与学习活动,并引导学生在课堂活动中感悟知识的生成,发展与变化。在教学过程中由学生主动去发现,去思考,留有足够的时间让他们去操作,体现以学生为主体的原则;而教师为主导,采用启发探索法、讲授法、讨论法相结合的教学方法。这样,使学生通过讨论,实践,形成深刻印象,对知识的掌握比较牢靠,对难点也比较容易突破,同时也培养了学生的数学能力。

   2、学法

  学生在小学就接触过直角三角形,先学习了锐角三角函数,所以这节课内容学生可以接受。本节的学习使学生初步掌握解直角三角形的方法,培养学生把实际问题转化为数学问题的能力。通过图形和器具的演示调动学生的学习积极性,同时让学生通过观察、思考、操作,体验转化过程,真正学会用数学知识解决实际的问题。

解直角三角形课件 篇6

  一、麸曲白酒的生产工艺流程 当前麸曲白酒的生产,主要采用清蒸法和混烧法两种生产方法,其工艺流程如下: 1.混烧法工艺流程  2.清蒸法工艺流程 二、麸曲白酒生产工艺 (一)原料的粉碎 1. 原料粉碎的目的 原料粉碎可以促进淀粉的均匀吸水,加速膨胀,利于蒸煮糊化。通过粉碎又可增大原料颗粒的表面积,在糖化发酵过程中以便加强和曲、酵母的接触,使淀粉尽量得到转化,利于提高出酒率。原料粉碎后可使其中的有害成分易于挥发排除出去,有利于提高成品酒的质量。 2.粉碎要求 一般薯干原料经过粉碎应能通过直径为1.5―2.5毫米的筛孔,高梁、玉米等原料也不应低于这个标准。 3.粉碎设备及操作 薯干原料可用锤式粉碎机粉碎,高梁等粒状原料可用磙式粉碎机破碎。目前许多工厂的粉碎设备已和原料的气流输送设备配套,劳动强度和劳动条件得到极大的改善(气流输送详细内容请参阅酒精工艺第二节)。 (二)配料 1.配料的目的和要求 配料是白酒生产工艺的重要环节,其目的是要通过主、辅原料的合理配比,给微生物的生长繁殖和生命活动创造良好的条件,并使原料中的淀粉在糖化酶和酒化酶的作用下,尽可能多地转化成酒精。同时使发酵过程中形成的香味物质得以保存下来,使成品白酒具备独特的风格。配料时要根据原料品种和性质、气温条件来进行安排,并考滤生产设备、工艺条件、糖化发酵剂的种类和质量等因素,合理配科。 2.配料的主要依据 麸曲白酒的生产一般都在水泥池、石窖或大缸内进行,发酵过程中无法调节温度,只有适当控制入池淀粉浓度和入池温度,才能保证整个发酵过程在适宜的温度下进行。但入池温度往往受到气温的限制,因此只有通过控制入池淀粉浓度来保证发酵过程中产生的热量和酒精浓度,使不超过微生物正常活动所能忍受的限度。 (1)热量问题 酒精发酵是个放热过程,热量的产生有两种途径,即呼吸热和发酵热。产生呼吸热的反应式如下: C6H12O6十6O2  ――→ 6CO2十6H2O十热量(2817千焦耳) 在麸曲白酒发酵时,因为氧气少,所以呼吸热在总热量中占的比例很小,而是以发酵热为主 的,其反应式如下: C6H12O6  ――→2C2H5OH十2 CO2十热量(83.6―96.1千焦耳)   根据测定,每100克葡萄糖在酒精发酵时生成下列主要产物: 发酵产物 数量(克) 热能(千焦耳) 酒精 51.1 1500 甘油 3.1 60.2 琥珀酸 0.56 8.35 酵母残渣 1.3 21.55 二氧化碳 49.2 0 合计 1590.1 每100克葡萄糖具有1660千焦耳热量,因而在发酵过程中每100克葡萄糖能释放出70千焦耳的热量,相当于每克葡萄糖放出700焦耳的热。根据淀粉水解生成葡萄糖的数量,即每克淀粉在酒精发酵时能放出770焦耳热量。若以酒醅中含60%的水分计算,当酒醅中淀粉浓度由于发酵而降低1%时,酒醅温度应升高约2.4℃。考虑到热量散失和发酵过程中产生其它成分的影响,发酵过程中当淀粉浓度下降1%时,酒醅温度实际约升高2℃左右。 发酵温度的`高低与酵母的发酵力有着密切的关系。当温度升高,又有酒精存在时,酵母的发酵力会受到很大抑制。较高温度(例如36℃左右)会使酵母发酵到一定程度就停止。较低温度下发酵(例如28℃左右),酵母的酶活力不易被破坏,发酵持续性强,对糖分的利用比较彻底,因而出酒率也较高。麸曲白酒在发酵过程中,由于固体酒醅的传热系数较小,无法采取降温措施,只能靠控制入池温度和入池淀粉浓度来调节发酵温度,其中入池温度又往往受到气温的影响,所以主要是利用适当的入池淀粉浓度来控制池内发酵温度的变化,使发酵温度在整个发酵过程中不超过一定的限度,保证发酵的正常进行。根据酵母的生理特性,要求发酵温度最高不超过36℃6,若入池温度控制在18―20℃左右,也就是在发酵过程中允许升温在16―18℃左右的范围,根据每消耗1%淀粉浓度醅温约升高2℃计算,那末在发酵过程中可以消耗淀粉浓度9%左右,而一般酒醅的残余淀粉浓度为5%左右,说明入池淀粉浓度应控制在14―15%左右。如果采用续渣法生产,因为酒醅反复发酵,入池淀粉浓度可以适当提高一些,可控制在15―16%左右。如果采用配糟一次发酵法生产,因为配糟量较大(一般在1∶5左右),大多数酒糟可参与反复发酵,因此入池淀粉浓度可控制在13―14%左右。当然还要考虑到气温条件,原料品种和质量等其它因素的影响,应该根据具体情况进行灵活掌握。 (2)酒精浓度的问题 淀粉是产生酒精的源泉,在发酵过程中,当酒精达到一定的浓度时,会对微生物产生毒性,对酶起抑制作用,所以要在配料时注意适宜的淀粉浓度,使形成的酒精不超过微生物能忍受的限度。 根据淀粉经水解形成葡萄糖,又经酵母发酵转化成酒精的反应式计算,淀粉的理论出酒率为56.78%,或者说,每消耗1.53克淀粉可产生1毫升纯酒精。 酵母的品种不同,耐酒精的能力也不一样,一般在8.5%(容量),就明显阻碍酵母繁殖,酒精浓度达到12―14%(容量)时,酵母逐步开始停止发酵。但对酵母发酵而言,还受到温度、糖度、酵母品种等因素的影响。固体发酵白酒,酒醅所含水分较少,相对酒精浓度就较大,成熟酒醅中若含70%的水分,酒精浓度达7%(容量)时,那么相对酒精浓度就是10%(容量),这样的酒精浓度对酵母发酵还不致造成很大影响。 霉菌的蛋白酶在酒精浓度达4―6%(容量)以上时,酶活力就会损失一半,而霉菌的淀粉酶在酒精浓度高达18―20%(容量)以上时,酶活力才开始受到抑制。 从以上分析中可以看出,只要控制一定的酒精浓度(例如一般8%),对霉菌糖化和酵母发酵不会产生多大的影响。 (3)pH值问题 入池淀粉浓度过高,发酵过猛,前期升温过快,则因产酸细菌的生长繁殖,造成了酒醅酸度升高,影响出酒率和酒的质量。但各种微生物和各种酶都是由蛋白质所组成,微生物的生长和酶的作用都有适宜的pH值范围,如果pH值过高或过低,就会抑制微生物的生长,使酶活性钝化,影响发酵过程的正常进行。而适当的pH值可以增强酶活性,并能有效地抑制杂菌的生长繁殖。例如酵母菌繁殖的最适pH值为4.5―5.0,再低一些对酵母菌的生长繁殖影响也不大,但这样低的pH值对杂菌会产生很大的抑制力,若培养基的pH值为4.2或更低一点时,仅酵母可以发育,而细菌则不能繁殖,所以用调节培养基的pH值,来抑制杂菌的生长是个有效的方法。目前工厂里根据长期实践的经验,常用滴定酸度的高低来表示培养基或发酵醪中含酸量的多少。pH值是表示溶液中的H+浓度高低,而滴定酸度表示溶液中的总酸量,包括离解的酸和未离解的酸,它在某些情况下和pH值有一定的关系。麸曲白酒生产中,酸度最主要的来自酒醅,其次来自曲和酒母。在发酵过程中引起酸度增加的主要原因是杂菌的污染。         3.填充材料 酿制麸曲白酒,在配料时往往需要加入填充料,目的是为了调整淀粉浓度,增加蔬松性,调节酸度,以利于微生物的生长和酶的作用,并能吸收浆水和保持酒精,为发酵和蒸馏创造良好的条件。常用填充材料的种类和特性见表4―20。选用填充科要田地制宜,注意其特点和所含有害成分的影响。 常用作填充料的是稻壳、小米壳、花生壳等。以吸水性讲,玉米芯最大,这对出酒率有利。高梁壳含单宁较多,会影响糖化发酵。对酒的质量来讲,玉米芯含有较多的聚戊糖,生成的糠醛量较多。稻壳含有大量的硅酸盐,用量过多,会影响酒精的饲料价值。所以在选用各种填充料时要全面考滤,合理使用。 固态法麸曲白酒生产中,目前配料时均配人大量酒糟,主要是为了稀释淀粉浓度,调节酸度和疏松酒醅,并能供给微生物一些营养物质,同时酒糟通过多次反复发酵,能增加芳香物质,对提高成品白酒的质量有利。虽然酒糟经化验还含有5%左右的残余总糖,但主要是一些纤维素、淀粉l,6键结构的片段以及其它一些还原性物质,这些物质较难形成酒精,而被残留在酒糟中。 4.配料的比例和方法 由于原料性质不同、气温高低不同、酒糟所含残余淀粉量不同及填充料特性的不同,配料比例应有所变化。如果原料淀粉含量高,酒糟和其它填充料配入的比例也要增加;如果酒糟所含残余淀粉量多,则要减少酒糟配比而增加稻壳或谷糠用量。填充料颗较粗,配入量可减少。根据经验计算,一般薯类原料和粮谷类原料,配料时淀粉浓度应在14―16%左右为适宜。填充料用量占原料量的20―30%,根据具体情况作适当调整。粮醅比一般为1∶4―6。 例如以薯干粉为原料(以含淀粉为65%计算),采用清蒸一次发酵法生产,原料配比为: 冬天 薯干粉∶鲜酒糟∶稻壳=1∶5∶0.25―0.35 夏天 薯干粉∶鲜酒糟∶稻壳 =1∶6―7∶0.25―0.35 配料时要求混和均匀,保持疏松。拌料要细致,混蒸时拌醅要尽量注意减少酒精的挥发损失,原料和辅科配比要准。 (三)蒸煮 1.蒸煮的目的 蒸煮是利用水蒸汽的热能使淀粉颗粒吸水膨胀破裂,以便淀粉酶作用,同时借蒸煮把原料和辅料中的杂菌杀死,保证发酵过程的正常进行。在蒸煮时,原料和辅料中所含的有害物质也可挥发排除出去。 2.蒸煮过程中的物质变化 (1)淀粉 淀粉在蒸煮时先吸水膨胀,随着温度的升高,水和淀粉分子运动加剧,当温度上升到60℃以上,淀粉颗粒会吸收大量水分,三维网组织迅速扩大膨胀,体积扩大50―100倍,淀粉粘度大大增加,呈海绵状糊,这种现象称为糊化。这时淀粉分子间的氢键就被破坏,使淀粉分子变成疏松状态,最后和水分子组成氢键,而被溶于水,有效地被淀粉酶糖化。 原料不同淀粉颗粒的大小、形状、松紧程度也不同,因此蒸煮糊化的难易程度也有差异。麸曲白酒是采用固体发酵,原料蒸煮时一般都采用常压蒸煮。由于要破坏植物细胞壁,又考虑到淀粉受到原料中蛋白质和盐类的保护,以及为了达到对原料的杀菌作用,所以实际蒸煮温度都在100℃以上。 (2)蛋白质及含氮有机物质 由于常压蒸煮,温度不太高,蛋白质在蒸煮过程中主要发生凝固变性,极少分解。而原料中氨态氮在蒸煮时便溶解于水,使可溶性氮增加,有利于微生物的作用。 (3)糖分 蒸煮过程中使戊糖脱水成

解直角三角形课件 篇7

  2 但愿人长久 教学目标: 1、学会本课生词,其中田字格中的只识不写,理解由生词组成的词语。 2、能正确、流利、有感情地朗读课文,读懂课文。 3、体会作者对兄弟苏辙的思念之情,理解“但愿人长久,千里共婵娟”的含义。 教学重、难点: 理解“但愿人长久,千里共婵娟”的含义。 教学时间:2课时   第一课时 教学内容:学习生字,朗读课文,读懂课文。 教学目标: 1、学会本课生词,其中田字个格中的只识不写,理解由生词组成的词语。 2、能正确,流利,有感情地朗读课文,读懂课文。 教学重点、难点: 理解词语及重点句的意思 教学过程: 一、简单介绍生平,揭示课题。 可让学生课前搜集一些与本文有光的资料,包括苏轼的一些诗词,然 后老师再加以补充。 (1)介绍苏轼 四川人,北宋文学家,唐宋八大家之一。 苏轼与弟苏辙情同手足,但长期天各一方,时直中秋,目睹别人家团聚,思念之情油然而生,然后他在伤感之时,悟出真缔,于是解脱惆怅,写出了‘但愿人长久,千里共蝉娟’的千古绝唱。 (2)板书课题 二、初读课文 1 、自读课文 1)出示自读要求 自由练读生字表上的生字 2)划出课文中带有生字的'词语 3)力求读顺句子,读通全文 4)学生练读全文 5)抽读卡片 6)读准字音 7)理解词语: 皓月:明亮的月亮。 埋怨:因为事情不如意而对别人或事物表示不满。 2 范读课文 三、细读课文 1 、细读1-3自然段 理解“朝庭“:密洲”两个词语 2 、学习第二自然段 自由读课文 看图理解词语“皓月当空”,“万里无云”,想象家人团聚,品尝瓜果,观赏明月“心绪不宁”是什么意思 3、学习第三自然段 苏轼为什么思念弟弟 “手足情深”是什么意思 “形影不离”呢? 4 、指导朗读 作业布置:抄写词语 板书设计: 心绪不宁 形影不离         第二课时 教学内容:理解课文内容。 教学目标: 1、理解文章中含义深刻的句子 2、体会作者对兄弟苏辙的思念之情,理解但愿人长久,千里工婵娟的含义。 教学重、难点: 理解“但愿人长久,千里工婵娟”的含义。 教学过程: 1、继续细读课文 自由读课文。 指明说说苏轼为什么要埋怨月亮 苏轼移情于月也戏人,偏偏在别人分离的时候变得这么圆。 自由练读。 这段后面是省略好,他省略了什么? 引导想象。 这个问题问的没有必要,可删去,因为课文已说得很完整了。 细读5,6自然两段 想到这而,他的心里似乎宽慰了许多,便底声吟诵起来。 想到这儿还想到哪儿? 他为什么宽慰了许多?这说明了什么?人有悲欢离合,就象月亮有阴晴圆缺,恰是世之长理,实难十全十美,他的宽慰,正是他与常人不同的可贵之处。 理解“但愿人长久,千里共蝉娟”。但愿美好的感情常留在人们的心间,虽然远隔千里,也能共同拥有这一轮明月,既然离别难免,那就不必伤悲,将思念之情留在心里,共同欣赏良宵美景。 2 、总结课文内容 本课以故事的形式介绍了北宋文学家苏拭的名词《水调歌头》的创作经过。 3、指导背诵第4-6段 4、指导造句 一起……一起……出示文中样句 示范:他们俩一起读书,一起玩耍 造句可随课文教学,讲到有关自然段直接让学生在老师指导下练习造句。 5、作业   板书设计:   心绪不宁埋怨 } 重亲情转念宽慰 } 通情达理  

解直角三角形课件 篇8

  第一方面:教材分析

  1、本节的地位作用

  《解直角三角形》,是前面学过的相似及函数问题的`延续和综合应用,同时也是高中继续学习解斜三角形的重要预备知识。它的学习还蕴含着数学建模和转化化归的数学思想,所以,本节内容无论在本单元,还是整个初中教材甚至中考中都具有重要的地位。

  2、学习目标

  由于本节课是第一课时,主要是使学生理解直角三角形的边角关系,并能运用关系解直角三角形和与之相关的实际问题,所以我参考课标提出的阶段性要求,确立本节的教学目标是:

  (1)会根据直角三角形已知元素,解直角三角形。

  (2)通过对解直角三角形的学习,我们能感知未知元素与已知元素的关系,体会知识点之间的内在联系。

  (3)培养学生问题意识,渗透转化思想和数学建模意识。

  3、本节课重点是解直角三角形,这是因为它和相似等知识一样,是以后会解题的重要工具,将被广泛的应用。

  难点是选择合适的边角关系。这是因为在解直角三角形时,需要学生根据已知条件,结合图形,经过分析,选择准确简单的关系式,而学生刚学三角函数,应用还不灵活,所以感到困难。

  第二方面:教法分析

  本节课我选用了引导发现法和归纳总结法,并应用了媒体教学。这是因为课标提出“教学活动是师生之间,学生之间交往互动与共同发展的过程,教师是教学活动的引导者与合作者。”这两种方法可以让老师成为导演,学生扮演演员,充分发挥学生的主体地位。而媒体的使用可以满足学生的好奇心,课堂容量增大,最大限度的提高课堂效率。

  第三方面:学法指导

  为了充分发挥导学案的以案导学的作用,在学案中我根据学习内容的需要,增加了“老师温馨提示”栏目,让学生在课前预习时降低学习难度,能够跳一跳,摘到桃子。在教学时,我注意引导学生养成及时归纳、总结规律方法,有目的学习的好习惯。

  第四方面:教学程序设计

  本节课的教学我按照学案导学的“学——研——展——教——达”的教学模式展开。

  1、在学这个教学环节,我在课前下发学案,让学生在学案的引领下,充分感知本节课要学习的内容,记录预习疑惑,及查阅相关资料。及时发现自身学习本节内容的不足之处,在上课时能够积极思考,合作,交流,展示。

  2、在研这个环节,我精心设计问题,将本节的唯一知识点———解直角三角形,遵照“由特殊到一般”的原则转变为探索性问题的问题点、能力点,既学案中第二个大问题的里4个小问题,通过对知识点的教师设疑、学生质疑、解释、归纳总结等一系列师生研讨活动,得出解直角三角形的定,挖掘出它的内涵和外延,从而激发学生主动思考,逐步培养学生探究精神以及对教材的分析,归纳,演绎的能力,让学生学会看书,学会自学,进而突出本节重点。

  3、在展这个环节我以本节例题即学案中的例1为基础,采用变式训练,逐渐增加问题难度,让学生在不同的问题中,多角度领悟本节重点知识——解直角三角形问题的实质,通过“兵教兵,兵强兵,兵练兵”的方法,让学生充分展示和反馈,帮助学生理解解直角三角形的注意事项,及怎样选择合适的边角关系式,怎样引辅助线,怎样写解题过程等问题,达到突破本节难点的目的。

  4、在教这个环节我在学生理解解直角三角形方法的基础上,应用它解决生活中的实际问题,即学案上拓展提升问题,它实质也是本节例题的一个变式训练,培养学生一题多变,一题多解的思维方式,让学生体会数学知识的螺旋上升美。并且我精选了贴近学生生活情境的实际背景,寓德育与数学一体,生活与数学一体。激发学生的学习兴趣,提升学生的创新思维和合作意识,让数学思维好的同学吃的饱,使不同的人在数学上有不同的发展。

  5、通过达标检测这个环节,及时反馈本节学生存在的问题,当堂点评,充分发挥小组的合作精神。

  6、作业紧紧围绕巩固本节所学内容展开,有一定的梯度,让不同程度的学生都有所收获。板书设计本着重点突出的原则,让学生对本节课的主要知识一目了然,加深印象。

  第五方面:设计理念

  在设计本节课时,我力求让学生意识到:要解决老师课堂上提出的问题,看书不看详细不行,只看书不思考不行,思考不深不透还不行,如本节的复习提问部分,我虽然在导学案中给出了,但我在提问时却换了一个方式提问,目的让学生真正理解学案内容。而不是照着学案念,在讲授本节课时,我尽量实现自己角色的转变,让自己从讲台走下来,成为“平等中的首席”。

  总之,我尽量创设适当和适合的教育情境,因为我知道,如果将15克盐放在我面前,无论如何都难以下咽,但是,把它放在鲜美的汤中,在享受佳肴时,15克盐早已被吸收。情境之余知识,犹如汤之余盐,盐要溶入汤中,才能被吸收;知识需要溶入情境中,才能显示出活力和美感!

  想了解更多实用资料网的资讯,请访问: 实用资料

本文来源:https://www.liuxue86.com/a/4894052.html
延伸阅读
教师需要提前规划每节课的教学课件,这是必不可少的。因此,老师们需要认真编写教案和课件,这样才能更好地掌握教学内容和方法。创作一份精心制作的课件可以让教师更加自信地进行教学。今天编辑
2023-05-27
数数用用,一生不穷,单单用用还不够,海枯石烂,当你面对一个任务不知如何下手时,通常需要准备一个方案。撰写方案时需要注意其结构和特点,所谓好的方案究竟该如何呢?在网上搜索到一篇叫做“
2023-05-27
依照您的需求,出国留学网为您筛选出了一些高质量的信息“毕业典礼园长致词”。为了让听众更易于接纳信息,演讲稿需要具备充分的技巧。在不断进步的时代中,发言稿使用的机会越来越多,也作为演
2023-05-27
在没人留意中,时光就逝去了。很多人已经开始抓紧时间写自己的述职报告了述职报告具有一定的总结性和汇报性。你了解岗位述职报告吗?下面是出国留学网编辑为你精心整理的“关于风控工作述职报告
2023-05-27
学生的检讨篇1这次我犯了一个天大的错误?我喝酒了,还进了医院,这次反省错误也让我明白了很多?最近我都是活在一个十分痛苦的世界里我反省了很多对于这次被学校开除我感到十分内疚。我知道我
2023-05-27
栏目特意为你整理解直角三角形教学反思。教师生动的课堂,要求课前就要做好准备,每个教师在走上讲台前,都会做好自己的教案。教案可以帮助教师让课堂更具实效性。供有需要的朋友参考借鉴,希望
2023-05-16
出国留学网栏目精选:“直角三角形教学反思”,欢迎阅读。愿作园丁勤浇灌,甘为蜡炬尽燃烧。在上课之前把教案写好是每个老师应该做的。教案有利于教师设计和安排教学内容、教学步骤、教学方法等
2022-12-10
直角三角形是数学几何中一个十分常见的图形,那么关于直角三角形的相关知识点大家知道吗?下面是由出国留学网编辑为大家整理的“直角三角形面积公式是什么怎么算”,仅供参考,欢迎大家阅读本文
2021-11-17
直角三角形是数学几何中一个重要图形,在考试中也时常作为考点出现。下面是由出国留学网编辑为大家整理的“直角三角形面积公式是什么怎么算”,仅供参考,欢迎大家阅读本文。直角三角形面积公式
2021-11-17
每一位教师都需要使用教案课件,因为它是教学过程中不可或缺的一部分。相信大家都对写教案课件并不陌生。好的教学课件可以帮助教师更好地展示知识点和概念,但在写教案课件之前,大家应该考虑哪
2023-05-27