假如您对于“7的加法教案”有所疑惑,那么这篇文章绝对会对您有所裨益。在教师的常规操作中,教案课件便是不可或缺的元素之一,只需老师认真负责地书写,即可达到良好的效果。教案是为了促进教育现代化和成人教育而开发的重要手段。
7的加法教案 篇1
教学目标:
1、结合具体的情景,体会理解分数加减法的意义。
2、在具体的情景中,理解掌握异分母分数加减法的计算方法与法则。
3、让学生在讨论交流中,感知转化的数学思想,体验成功的乐趣。
教学重点:
理解并掌握异分母加减法的计算方法与法则。
教学难点:
掌握异分母分数加减法的算理与算法。
教学过程:
一、复习引入
(一)复习有关分数单位的知识。
1、什么叫分数单位?(把单位“1”平均分成若干份,表示这样的一份的数,叫 做这个分数的单位。 )
2、填一填 7/16 的分数单位是( ) ,它有( )这样的分数单位。 7/16 和 1/16 的分数单位相同吗? 1/2 和 1/4 的分数单位相同吗?
(二)复习通分
2/7 和 1/3 1/2 和 1/4 师:咱们已经掌握整数,小数加减法的计算方法,而分数加减法的计算,咱们从 这节课开始研究。 出示课题:分数加减法
二、创设情境、提出问题
1、同分母分数加减法 出示例 1(展示课件)
师: 你瞧,工人叔叔正在说些什么?请同学们根据他们的对话,提出合适的数学 问题,并解答。(四人小组合作学习)
抽学生口头汇报,同时老师根据学生的回答课件出示。
引导学生观察计算结果,让学生明白用分数表示计算结果时,要约成最简分数。
生 1:今天一共铺了这个广场的几分之几? 列式为:1/16+1/16=8/16=1/2。答:今天一共铺了这个广场的 1/2。
生 2:下午比上午多铺了这个广场的几分之几?(或上午比下午少铺了这个广场的几分之几?) 列式为:7/16-1/16=6/16=3/8。答:下午比上午多铺了这个广场的 3/8。
师:你们真能干,不仅提出了问题,还正确的解答出来了。
师:同学们,你们知道他们俩是怎样把结果算出来的吗?同桌议一议。学生讨论,汇报讨论结果。
师:有谁能用自己的话说一说分母相同的分数怎样加减呢?
生:分母相同的分数相加减,分子相加减,分母不变,最后结果能约成最简分数的要约成最简分数。
生举出类似的算式计算(全班练习)
2、异分母分数加减法
师:孩子们真能干!那这两个问题又是怎样解决的?前几天和今天一共铺了这个广场的几分之几? 今天比前几天多铺了这个广场的几分之几?
生:1/2+1/4=3/4 ,1/2-1/4=1/4 师:这两个算式与前边的算式的区别?(分母不同)
师:说说结果是怎样得来的?预设:画图得出结果。 把分母变成同分母分数,再计算得出来的。 把分数化成小数计算,再把计算结果的小数化成分数。 ……
师:大家积极的开动脑筋,探索出了这么多解决问题的方法,真了不起!但是这几种计算方法是否对每个分数加法算式都是适用呢?
学生说出自己的意见
师:同意既适用又简便的方法(先同分,再计算)再把 1/2+1/4=( ),1/2-1/4=( )全班练习,写出计算过程。 1/2+1/4=2/4+1/4=3/4 1/2-1/4=2/4-1/4=1/4
师:同学们在计算过程中,最关键的步骤是什么?
生:最关键的步骤是先通分,再计算。
师:说一说,异分母分数的计算方法?
生:异分母分数相加减,先通分,再按同分母分数加减法计算。
三、学生练习
1、基础练习 填一填:(出示课件)
①同分母的分数相加减,(分母 )不变,( 分子 )直接相加减,计算的结果 要化为( 最简分数 )。
②异分母分数相加减,先(算一算: 4/15+7/15=11/15 5/6+7/8=20/24+21/24=41/24
2、拓展练习 下面的题有什么特点?怎么算比较快? 1/4+1/3= 1/3+1/7= 两个分母是互质数,分子都是 1。 得出:1/a+1/b=(b+a)/ab
3、接龙游戏
1/2+1/3 3/4-1/2
四、课堂小结
1/2-1/3 2/3+1/6 1/2+3/4 2/3-1/6 1/a-1/b=(b-a)/ab 1/3-1/4= 1/2-1/5= 17/18-13/18=4/18=2/9 7/9-2/3=7/9-6/9=1/9 通分),再按( 同分母分数加减法 )计算。 (每组 6 个同学,一个接一个地计算,看哪组又对又快)
7的加法教案 篇2
教学目标:
1、通过直观的操作活动,理解异分母分数加减法的算理。
2、能正确计算异分母分数的加减法。
3、培养推理和概括能力。
教学重、难点:
1、重点:探索并掌握异分母分数加减法的计算方法。
2、难点:理解先通分,再加减的算理。
教、学具准备:
1、教具:投影仪。
2、学具:每人准备正方形纸片若干。
教学过程:
一、复习导入。
1、请学生拿出一张正方形的纸折一折,然后在折的一部分涂上颜色,并说一说涂颜色的部分是正方形纸片的几分之几?
2、请学生介绍自己的折纸与涂色的情况。
3、现在要计算两张纸的涂色部分合起来是多少,你可以列出那些算式?
4、想一想,根据分数的分母特点,这些算式可以分成几类?可以分成两类,一类是分母相同的,另一类是分母不同的。引出今天的学习内容:探索分母不同的分数相加减的计算方法。
二、自主探索。
1、根据自己的爱好,任意选择一道分母不同的加法算式,试一试如何计算,请学生进行独立的尝试。
2、汇报自己探索的过程。
3、就分母不同的加法算法应该是什么样的,请学生们进行讨论。
4、结合折纸的涂色部分,思考、验证哪一种计算方法是正确的。
5、交流汇报。
(1)“与在图上是不能直接相加的,因为它们所代表的每一份都不同,只有当每份都相同时,才可以直接相加。”
(2)“每份不同也就是说它们的分数单位不同,所以只有分数单位相同的才可以直接相加。”
(3)“所以分母不同的分数相加减,应该先通分,把它们变成同分母的分数,然后再相加减。”
(4)“计算结果能约分的要约成最简分数。”
三、练一练。
1、第1题,看图填一填。
2、第2题,估计下列那些算式的结果比较接近1,,0,再算出来。估计分数加减法的得数大小比估计整数运算的结果要困难得多,为此,在开展本题练习前,再一次复习用分数表示直观图。
3、第3、4题,独立完成。
4、第5题,运用分数知识解决简单的实际问题,建议用线段图分析题意,作草图即可。
四、总结。
通过本节课的学习,你学到了什么?你认为进行分母不同的分数(异分母分数)相加减计算时要注意些什么?
7的加法教案 篇3
活动目标:
1.引导幼儿积极参加到“小猴摘桃”的数学活动中,并能遵守游戏规则。帮助幼儿能正确熟练地运算,提高计算能力。
2.鼓励幼儿在活动中积极思维,提高思维的灵活性。
3.通过数学游戏化,进一步培养幼儿对数学活动的兴趣。
重点:引导幼儿积极参加活动,遵守游戏规则,能正确熟练地运算,掌握运算方法,提高运算能力。
难点:运算中能灵活运用运算方法,思维灵活。
活动准备:场景设置:自制一棵桃树(桃树上结满了桃子)、石块(泡沫垫子)、皱纸(溪水)、小猴头饰若干、自制篮子若干。
活动过程:
一.引出课题,激发兴趣
师:“小猴子们,猴外婆打来电话说院子里的桃子熟了,叫我们小猴子们去摘桃,高兴吗?(高兴)好!那我们就出发吧!外婆家离我们比较远,我们可要勇敢呦!不怕困难。”
二.小猴去摘桃
1 过小溪:
(1)“猴妈妈”(老师)带着“小猴子”(小朋友)去摘桃,可有一条小溪挡住了去路,小溪里有许多大大小小的石块。小溪边还有一块牌子(请你踩着石块走,只能踩算出来得数是10的石块,踩错了要掉进水里的)。
(2)师:“赶快找找能踩的石块吧,哪块石头可以踩?为什么?你是怎么算出来的”?
(3)幼儿进行相应的计算:4+6、3+7、8+2等,并说出运算过程。
(4)找出后,幼儿一个一个过小溪。
2 租篮子:
(1)总算安全地过了小溪,小猴们继续往前走,咦?路边还有个出租屋,专门出租篮子,真好。正好可以把篮子借给我们用。出租屋的外面还有一块牌子呢(只出租10号篮子,请你看清楚三个数,相加是10,这只篮子就租给你)。
(2)师:“小猴们赶快找找哪些是10 号篮子,说说你是怎么算出来的?为什么要用这种方法算”?(又快又准确)
(3)幼儿进行相应的运算:3+3+4、2+3+5、1+4+5等。
三.小猴摘桃:
师生:哇!又大又红的桃子真多呀!
小猴准备摘桃。
(1)老师讲明要求:有的桃子上有算式,有的桃子上有数字(4、6、或2、3、5)。
(2)只摘相加得数是10的桃子。
四.庆丰收:
(1)老师播放欢快的音乐,小猴们欢天喜地分享劳动的收获与喜悦。
(2)老师播放轻松的音乐,小猴们稳定情绪,休息吃“桃子”。
五.课后延伸:游戏“卖桃子”。
7的加法教案 篇4
【教学目标】
1.结合具体的情景,体会理解分数加减法的意义。
2.在具体的情景中,理解掌握异分母分数加减法的计算方法与法则。
3.让学生在讨论交流中,感知转化的数学思想,体验成功的乐趣。
【教学重点】
理解并掌握异分母加减法的计算方法与法则。
【教学难点】
掌握异分母分数加减法的算理与算法。
【教学准备】
多媒体课件、两张正方形纸片、题单(看图填空)。
【教学流程】
课前谈话:
我知道我们5年级的学生在语文课中刚刚学习过猜谜语。老师这里也有几个谜语,想不想猜一猜?
1.一加一不是二 (打一字)
2.一减一不是零(打一字)
3.再见了,妈妈 (打一数学名词)
4.考试不作弊 (打一数学名词)
5.七上八下 (打一分数)
师:在猜谜的过程中,我看到很多孩子都在积极地动脑思考,发言声音也很洪亮。那在即将开始的课中,你们能做到吗?
好,我们开始上课。
一、谈话引入
在我们刚才的谜语中,提到了我们本学期学习过的分数。今天,我们便一起来继续研究分数的有关知识——分数加减法。板书课题。
二、学习新知
1.教学同分母分数加减法的计算方法。
(1)课件出示情境图:一工人说,今天上午铺了这个广场的1/16,另一工人说,今天下午铺了这个广场的7/16。
(2)根据信息,你能提出哪些数学问题?
(3)课件出示问题。
①今天一共铺了这个广场的几分之几?
②今天下午比上午多铺了这个广场的几分之几?
(4)拿出本子,列式计算两个问题。不作答。
(5)请一生展示讲解。
预设1:1/16+7/16=8/16=1/2
预设2:7/16-1/16=6/16=3/8
师:你们同意吗?
通常结果要化为最简分数。
师:1/16和7/16两个分数的分母是相同的,我们称为同分母分数。
(6)师:谁来说说1/16+7/16是怎样算的?
生:分母不变,分子相加。
(7)师:在这里,为什么可以分母不变,而只把分子相加呢?
生:因为他们分母相同。
师:在分数中,分母表示什么?
生:平均分的份数。
师:在这里是将这个广场的面积平均分为16份。单位1相同、平均分的份数相同、那每一份的大小呢?也相同。每一份就是它们的分数单位都是1/16;1/16+7/16就是1个1/16+7个1/16,就是8/16。
(8)总结。
师:同分母分数加减法是怎样计算的?
生:分母不变,分子相加减。
师:一起来念一遍,同分母分数相加减,分母不变,分子相加减。(课件)
2.教学异分母分数加减法算理,初步感知算法。
(1)刚才我们用同分母分数加法解决了两个问题,求出今天铺了这个广场的1/2,如果我告诉你,前几天已经铺了这个广场的1/4,您能解决下面的问题吗?
问题:前几天和今天一共铺了这个广场的几分之几?
(2)一起说怎样列式。
生:1/2+1/4。
师:与前面相比,这个算式有什么特别的地方吗?
生:分子相等。
生:分母不同。
师:分母不同的分数我们称为——异分母分数。(板书)
(3)师:1/2+1/4得多少?猜一猜,试着计算一下。
学生独立尝试计算,老师在巡视中注意学生方法。(请三学生板书)
1/2+1/4 1/2+1/4=1/6 1/2+1/4
=2/6 =2/4+1/4
=1/3 =3/4
(4)师:你们同意哪一种呢?
(5)师:1/2+1/4=1/3你们觉得可能吗?为什么?
生1:1/2比1/3大,加上一个数应该比1/2更大,不可能比1/2还小。
师:同意吗?只用估算的方法,就可以做出判断。
生2:他们两个分母不同,不能直接相加减。应该先通分。
师:能直接相加吗?
生:不能。
(6)那第三种答案可能正确吗?有什么办法来验证一下吗?老师给你两个温馨小提示:你可以利用身边的纸折一折、画一画。也可以用其他的计算方法。先自己试一试。
(师巡视,参与学生讨论)
(7)交流汇报。
生1:我采用的是画一画的方法。我先把正方形纸平均分成2份,取其中的一份1/2染上颜色,再取剩下的一半即1/4染上颜色,这样总共就是3/4,所以3/4正确。
师:有图形,有数字,数形结合,清晰明了。
为了使同学们看得更清楚,老师把他这种方法用课件演示给大家。(课件演示)
师:1/2+1/4,他们的分母不同,平均分的份数也不同,每一份的大小也不同。能直接相加吗?先把1/2通分为2/4,2/4+1/4=3/4.
生2:我把他们化成小数再计算。
师:把分数化成小数,你们觉得怎么样?
生:好。
师:好的话就给点掌声吧!
生3:3/4-1/4=1/2。
师:我们看,和减一个加数等于另一个加数,用减法来验证加法,也很有创意!
……
(8)师:各种各样的方法都证明了3/4是正确的。那我们再来看看具体是怎样做的?
板书:1/2+1/4
=2/4+1/4
=3/4
(9)师:面对异分母分数加减法,我们提出猜想、试着解决、想办法验证,再得出结论。短短时间,你们已经经历了科学探究的过程。真了不起!但科学探究并未到此止步,我们还应该将我们的结论进行推广应用。用这种方法,试着做一道题。
3.教学例二。
(1)8/9-5/6 (教师巡视,提醒学生做题格式,学生做完,请两位计算方法不同的学生板演)
(2)交流汇报。
8/9-5/6 8/9-5/6
=48/54-45/54 =16/18-15/18
=3/54 =1/18
=1/18
(3)师:黑板上的答案对吗?观察这两种计算方法,你能找出他们有什么不同点?
生:不同之处,第一个是用两个分母的乘积作为公分母,第二个是用两个分母的最小公倍数作为公分母。
师:也就是选择的公分母不同。
师:那又有什么相同点呢?
生:相同之处是都把分母不相同的分数减法,利用通分转化为分母相同的分数减法。
师:观察得真仔细。
(4)总结法则。
师:你能总结一下异分母分数加减法是怎么计算的吗?
生:我们是把异分母分数先化成同分母分数,再来计算的。(板书:转化,通分)
生:我先通分,化为同分母分数,再按照同分母分数加减法计算。
师:在你的话中用到了一个词——化为。(板书:转化)在这里,我们是把异分母分数转化为同分母分数。
师:转化的方法是什么?通分。
师:一起看看法则。(课件出示)
三、基础练习
师:通过我们努力,探索出了知识,学到了思想方法。你能灵活运用吗?做一做题单上的题。
1.(出示题目,课件)看图填空。
集体对答案。
2.计算。(课件)
我们刚才利用异分母分数加减法的计算法则、数形结合解决了两个问题。如果没有图,你会计算吗?试试看。
1/4+2/5 7/9-2/3 1/10+1/15
师:做完的孩子可以到黑板上板书。
集体讲评。你觉得在计算时要注意什么问题?
师:经过你的提醒,相信你们做题的时候会更认真、仔细,是吗?
四、拓展练习
1.比一比。
那我们来比一比,看谁算得又快又正确。
(1)集体汇报。全对的举手。
(2)观察算式,上面的题有什么特点,怎样算才能比较快。小组讨论。
师:谁来说说你们的发现?
生2:我们发现当两个这样的分数相加时,他们和的分母就是两个分数分母的乘积,他们和的分子就是两个分母的和。
师:你真是善于观察、总结。我们来看第一排。1/2+1/3=5/6中,两个分数分母2和3的积作为和的分母,两个分数分母2和3的和作为和的分子。再来看1/9+1/10=19/90中,有这样的规律吗?
生3:在减法中,差的分母是两个分数分母的和,分子是两个分数分母的差。
师:一起来看,在1/2-1/3=1/6中,差的分母是2和3的积,分子是3和2的差。
师:那是不是每一个分数加减法算式都有这个规律?需要什么条件?
生:分子都是1,分母是互质数。
(3)你能用这个规律,快速计算下面几道题吗?
直接写答案在题单上,看谁做得最快。
2.简单评价。
规律的妙处在这里体现得淋漓尽致。面对试题,我们要有一双善于观察比较的眼睛。
五、全课小结
同学们,回忆一下这节课我们学习的内容。你有什么收获要和大家分享吗?
生:我学到了异分母分数加减可以转化为同分母分数加减法。
生2:我知道了为什么同分母分数可以分母不变,分子直接相加。而异分母分数不能直接相加。
生3:我学到了转化的数学思想。
……
师:同学们收获可真不小,关于分数,还有很多知识等待我们下去继续探究。
7的加法教案 篇5
教学内容:
北师大版第7册
教学目标:
1、教学技能目标:使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律,会运用加法交换律和加法结合律进行简便运算。
2、过程方法目标:使学生经历探索加法交换律和结合律的过程,通过对熟悉的实际问题的解决,进行比较和分析,发现并概括出运算律。
3、情感、态度、价值观目标:使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。教学重点:使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律,会运用加法交换律和加法结合律进行简便运算。
教学难点:
学生将实际问题抽象为用字母表示的一般规律,熟练掌握简便运算的一般规律和基本技巧。
教学过程:
一、创设情境,导入新课,学习加法交换律
1、课间操时间,大家都在进行自己喜欢的体育项目,大家说说你在操场上喜欢玩什么?来看看图中的小朋友在干什么?提问:从这张图片中,你获得了哪些数学信息?
你能提出哪些数学问题?(提示:今天主要研究加法运算)根据学生的回答,出示:①参加跳绳的一共有多少人?
②参加活动的一共有多少人?
2、我们先来解决第一个问题:参加跳绳的一共有多少人?
学生独立列式,指名回答,教师板书(28+17=45 17+28=45)仔细观察,比较一下这两个算式有什么是相同的有什么是不同的?它们的结果呢?(两个加数相同,都是28和17,加数的位置不同,计算结果相同)
你们能用一个符号把它们连接以来吗?教师继续板书:28+17=17+28为什么能用等号连接起来呢?指出:这两个算式都表示两个数相加,尽管加数的位置发生了变化,但和不变,所以可以用加号连接.你们能够自己模仿写出几个这样的算式吗?根据学生回答,教师随机板书算式,并追问:这样的算式能写几个?
3、我们再仔细的观察这几个算式,,两个数相加时会有什么样的规律呢?象这样的算式还有多少?也就是说任何两个加数相加都存在这样的规律.你们能结合上节课总结乘法交换律和乘法结合律的方法用一个算式来表示你们的新发现吗?
教师巡视,并作相应的辅导,在学生交流,板书:a+b=b+a。
4、教师小结:在很平常的一些四则运算中包含了一些规律性的东西,我们把这些规律叫做运算律。板书:运算律。教师指着板书指出:我们刚才研究的就是加法交换律(板书:加法交换律),学生齐读一遍。二.组织练习
完成练习题。下面我们再来研究加法中的另一个规律。
三、学习加法结合律
1、刚才通过解决第一题,我们得到了加法交换律,现在我们再来研究问题“参加活动的'一共有多少人?”看看我们有没有新的发现?
2、你们会自己列式解决这个问题吗?想想你为什么这样列式?学生练习,教师巡视指导。
3、学生回答,教师有意识地板书:
(28+17)+23=68(人)28+(17+23)(28+23)+17=68(人)28+(23+17)让回答的同学说说这么列式是怎么思考的?
下面,我们就来针对这两个算式开展研究:(28+17)+23 28+(17+23)
4、那你们观察一下,这两个算式有什么关系呢?(参与运算的数相同,运算结果一样;运算顺序不同)你们能用什么符号连接?教师板书:(28+17)+23=28+(17+23)
5、出示:下面的Ο里能填上合适的符号吗?(30+10)+50Ο30+(10+50)(27+23)+47Ο27+(23+47)
6、看着黑板上的板书,你们从中有了什么新的发现?学生小组交流后全班再交流,教师:三个数相加,先把前两个数相加,再同第三个数相加,或者先把后两个数相加,再和第一个数相加,它们的和不变。
7、这样的描述太长又难记,你们从第一个运算律中能得到启发,用简便的方法来表示你们的发现吗?自己尝试写一下。
板书:(a+b)+c=a+(b+c)教师揭示:这就是我们今天所学的第二个运算律——加法结合律(板书:加法结合律)。
8、渗透简便运算。计算比赛:两位同学上前比赛,不写过程,直接写得数,看谁速度快!
甲同学计算45+(88+12),乙同学计算(45+88)+12,30秒时间到!停笔!我宣布,甲同学快!乙同学慢!老师这样评价,你们有话要说吗?不公平!尤其是乙同学!甲同学算式中先算88加12,正好凑成100。乙同学呢?(凑不成100)能凑整的快是吗?好,再来一题!这次公平一点,自己选择,想算哪道就算哪道!师出示:75+(48+25)(75+25)+48等于多少?你算的是哪道?为什么都选这道?因为先算75加25正好得到100。原来巧用运算律还能使一些计算更简便呢!
9、做练习题巩固知识点
58+36+22+64= 357+288+143= 248+192+352= 129+235+171+165=
五、课堂总结
通过本节课的学习,你有什么新的收获?
六、作业与思考题
7的加法教案 篇6
教材分析
本节是在学生已经掌握了整数加法运算定律的基础上,把整数加法运算定律推广到小数加法。使学生理解整数加法运算定律对于小数加法也同样适用,并会运用加法运算定律进行关于小数加法的简便运算,进一步发展学生的数感。是对小数加法和加法运算定律的巩固和加深。引导学生探索知识间的联系,培养学生的迁移类推能力和渗透转化思想以及自觉进行简算的意识,提高思维的灵活性。
学情分析
本班有学生39人,其中男生24人,女生15人。绝大部分学生学习态度端正,学习积极性较高,但个体差异很大。有大约三分之一的同学能很好的掌握小数加法和整数加法的运算定律,并能灵活应用,理解能力和接受能力都较强;有三分之二多的同学对于小数加法和整数加法的运算定律还不能灵活应用,而且计算时也比较容易出错;本节课的内容,对于前面三分之一的同学,可以做到一点即通,而主要障碍点来自后面的三分之二的同学,他们的理解能力和接受能力都相对较差,需要反复的教,反复的练,甚至要一个个的手把手的教,点对点的练。所以在本节课应该采用集中学习,分组辅导,点对点练习的方法进行教学。
教学目标
1.使学生在解决现实问题的过程中,认识到整数加法的运算律对小数同样适用,能正确应用加法运算律进行一些小数加法的简便计算。
2.使学生在探索与交流的活动中,体会解决问题策略的多样化,增强优化意识;逐步形成积极的自我评价和自我反思的意识,体验数学学习的成就感。
教学重点和难点
1.教学重点:能正确运用加法运算律进行一些小数加法的简便计算。
2.教学难点:体会解决问题策略的多样性,增强优化意识。
教学过程
一、复习导入
1.引导学生复习运算律:整数加法的运算定律有哪几个?用字母怎样表示?
板书:a+b=b+a
(a+b)+c=a+(b+c)
2.下面各等式应用了什么运算定律?
①35+26=26+35 ②(27+38)+62=27+(38+62)
3.导入本课学习:加法交换律和结合律适用于整数和分数,是否也适用于小数加法呢?这节课我们就一起研究。
【设计意图:通过复习已学过的整数加法的运算定律,以旧引新,说明过去学的都是整数的运算定律,今天开始学习小数的运算定律 从而揭示课题。】
二、探索新知
1.出示例3。
2.引导学生读懂题目,弄清题意:这里要求什么?怎样形式?为什么?
让学生自主探究,最后得出:
一共用了多少钱,就是把买文具所用的钱相加。
8.9+3.6+6.4+1.1=_____(元)
【设计意图:让学生想出解决方法,培养学生探索思维。】
3.引导学生探索计算方法:联系整数计算以方法想一想,怎么计算?有哪些方法可以计算?有没有简便一点的方法?先让学生独立完成,再与同学合作、交流。学生完成探究后,每组代表汇报小组探究的结果。可能有两种:
(1)8.9+3.6+6.4+1.1
=12.5+6.4+1.1
=18.9+1.1
=20(元)
(2)8.9+3.6+6.4+1.1
=(8.9+1.1)+(3.6+6.4)
=10+10
=20(元)
4.引导学生比较两种算法:想一想,你会选择哪种?哪种算法好?为什么?引导学生认识到第二种算法更好,用到了加法结合律,更简便。
【设计意图:培养合作意识,让学生明白整数加法运算律同样适用于小数包括两层意思:同样存在和同样应用。这里让学生计算四个小数相加的和,列出算式以后,有些学生会按运算顺序依次相加,也会有学生调换加数的位置,另行组织相加的顺序。各种算法的最后得数相同,说明整数加法的运算律对小数加法也同样适用。】
5.引导学生归纳总结:整数加法运算律同样适用于小数。小数连加也可以交换加数的位置,也可以把加数结合相加,计算结果不会改变。即小数加法同样有交换律和结合律,应用运算律使算法更简便。
【设计意图:总结,加深印象】
三.练习
1.完成“练一习”第1、2题。
先让学生独立完成,再让学生说说怎样用简便方法计算。
2.完成练习九第2题。
学生练习后,提问:比较每组算式的计算过程和结果,你有什么发现?
指出:整数减法里的一些规律,小数减法里同样适用,也能使一些计算简便。
四.课堂总结
这节课你有哪些收获?对自己的学习表现怎样评价?
五.布置作业
完成课本第54页练习九第3~5题。
板书设计(需要一直留在黑板上主板书)
a+b=b+a
(a+b)+c=a+(b+c)
①35+26=26+35 ②(27+38)+62=27+(38+62)
8.9+3.6+6.4+1.1=_____(元)
(1)8.9+3.6+6.4+1.1
=12.5+6.4+1.1
=18.9+1.1
=20(元)
(2)8.9+3.6+6.4+1.1
=(8.9+1.1)+(3.6+6.4)
=10+10
=20(元)
整数加法的运算律,对小数加法也同样适用。
阿尔法趣味数学小课堂:教学反思
学生在本课学习之前,已经理解了加法交换律、结合律以及减法的运算律,并能应用于整数加、减计算。本课的教学是对原有的知识的一种迁移,所以在教学新知识前,我先让学生复习整数运算律的运用,为新知的探究打下基础。在教学时,我引导学生对运算律在小数中的运用作出探索,先列出算式,再让学生自主探索算法,经过比较得出的两种算法中选择最简便的,从而得出结论:整数中运用的运算规律同样也适用于小数。这样安排教学,可以让学生充分发挥主动性,学得更主动,掌握得更牢。