二元一次方程组中的数学思想,主要是指数学的“消元”思想,即:二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为一元一次方程,这样就可以先解出一个未知数,然后再设法求另一个未知数。这种将未知数的个数由多化少,逐一解决的想法,叫做消元思想。
具体转化方法是运用“代入消元法”或“加减消元法”,达到把二元一次方程组中的二个未知数消去一个未知数,得到一元一次方程,从而实现消元,进而解决问题。下面举例说明:
一、利用代入法快速求值:新人教版7年级下册105页有这样的描述:在二元一次方程组的一个方程中,把一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法。
借此消元思想,我们可以快速地解决许多求定值的问题。
例1.若3x-4y=0,且xy≠0,则的值等于
。解. 由3x-4y=0得:3x=4y,把3x=4y代入 得
= =
点评:此题巧妙借助代入法解决求定值问题。
例2. 已知x2-2x-5=0,将下列式子先化简再求值:(x-1)2
+(x+3)(x-3)+(x-3)(x-1)
解:原式=x
2-2x+1+x2-9+x2-x-3x+3=3x2-6x-5
=3(x2-2x)-5
∵ x2-2x-5=0
∴ x2-2x=5
∴ 原式=3×5-5=10
点评:利用“整体思想”将所给条件x2-2x-5=0变形为x2-2x=5,然后整体代入化简后的式子3(x2-2x)-5中,可收到“事半功倍”的效果。若先解方程x2-2x-5=0,得x=1±√6,再分别代入3x2-6x-5中求值,则没有抓住题目特征进行简便运算。
二、利用加减法快速求值:
新人教版7年级下册108页有这样的描述:两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。
合理利用此思想,在求值题中同样可以收到事半功倍的效果。
例3. 若4x+5y=10,且5x+4y=8,则 。
解:由题意得:
由 ① + ② 得:9x+9y=18 即:x + y= 2
由 ② - ①得:x - y=-2
所以 -1
点评:若直接把4x+5y=10和5x+4y=8组成方程组,求出方程组的解,再把解代入求值。这样运算量不仅大,而且容易出错。
如果认真分析所求值式,可考虑利用加减法很快求得x+y和x-y的值,于是此题迎刃而解。
三、化“未知”为“已知”
例4.已知 ,则x:y:z= ;
解:将方程组 中由② - ① 得:y-3z=0
∴ y=3z ③
把 ③ 代入 ② 中得: x = 2z
∴ x:y:z=2z:3z:z= 2:3:1
点评:此方程组中含有三个未知数,要解决该问题,就需要大胆创新,我们初一学生只学习了解二元一次方程组,根据化“未知”为“已知”的“消元”思想,就创造性地把它看作是关于x、y的二元一次方程组,从而找到解决问题的突破口。
总之,教师若能在平时教学中合理展示数学思想和具有代表性的数学方法,既可以让学生明晰数学知识之间的脉络和联系,同时还有利于提高学生的解决问题的能力。
中考政策 | 中考状元 | 中考饮食 | 中考备考辅导 | 中考复习资料 |