出国留学网

目录

等腰三角形课件精品

字典 |

2023-08-14 08:45

|

推荐访问

等腰三角课件

【 liuxue86.com - 实用资料 】

  我们为大家整理了一篇关于“等腰三角形课件”的文章,这些文件和资料希望能为你提供帮助欢迎收藏和分享。教案课件也是老师工作中的一部分,因此我们老师需要认认真真去写。教案有助于提高教师教育教学的规范化和制度化。

等腰三角形课件(篇1)

   1、教材分析

  (1)知识结构

  (2)重点、难点分析

  本节内容的重点是三角形三边关系定理及推论.这个定理与推论不仅给出了三角形的三边之间的大小关系,更重要的是提供了判断三条线段能否组成三角形的标准;熟练灵活地运用三角形的两边之和大于第三边,是数学严谨性的一个体现;同时也有助于提高学生全面思考数学问题的能力;它还将在以后的学习中起着重要作用.

  本节内容的难点一是三角形按边分类,很多学生常常把等腰三角形与等边三角形看成独立的两类,而在解题中产生错误.二是利用三角形三边之间的关系解题,在学习和应用这个定理时,“两边之和大于第三边”指的是“任何两边的和”都“大于第三边”而学生的错误就在于以偏概全;分类讨论在解题中也是学生感到困难的一个地方.

   2、教法建议

  没有学生参与的教学是不成功的教学,教师为了充分调动主体参与,必须在为学生提供必要的背景知识的前提下,与学生一道探索定理在结构上、应用上留给我们的启示.具体说明如下:

  (1)强化能力

  新课引入,先让学生阅读教材第一部分,然后通过回答教师设计的几个问题,使学生明确对三角形按边分类,做到不重不漏,其中等腰三角形包括等边三角形,反过来等边三角形是等腰三角形的一种特例.

  通过阅读,使学生初步认识数学概念的`含义,发现疑难;理解领会数学语言(文字语言、符号语言、图形语言),促进数学语言内化,从而提高学生的数学语言水平、自学能力及交流能力

  (2)主动获取

  在得出三角形三条边关系定理过程中,针对基础比较好的学生,让学生考虑回忆第

  一册第一章中学过的这条公理并给出证明,在这个基础上,让学生把定理的内容叙述出来.(3)激荡思维

  由定理获得了:判断三条线段构成一个三角形的一种方法,除了这一种方法外,是否还有其它的判断方法呢?从而激荡起学生思维浪花:方法是什么呢?学生最初可能很快得到“推论”,此时瓜熟蒂落,顺理成章地引出教材中的推论.在此基础上,让学生通过讨论,简化上述两种方法,由此得到下面两种方法.这里,学生若感到困难,教师可适当做提示.方法3:已知线段,( ),若第三条线段c满足- c则线段, ,c可组成一个三角形.教学中采用这种教学方法可培养学生分析问题探索问题的能力,提高学生对数学知识结构完整性的认识.

  (4)加深理解

  进行必要的例题讲解和适当的解题练习,以达到熟练地运用定理及推论.从过程中让学生体味到数学造化之神奇.也可适当指出,此定理及推论不仅提供了判定三条线段是否构成三角形的根据,也为今后解决字母取值范围问题提供了有利的依据.

  整个教学过程,是学生主动参与,教师及时点拨,学生积极探索的过程,教学过程跌宕起伏,问题逐步深化,学生思维逐步扩展,使学生在愉快、主动中得到发展.

   教学目标:

  (1)掌握三角形三边关系定理及其推论,会根据三条线段的长度判断他们能否构成三角形;

  (2)弄清三角形按边的相等关系的分类;

  (3)通过三角形的分类学习,使学生知道分类的基本思想,提高学生归纳概括的能力;

  (4)通过三角形三边关系定理的学习,培养学生转化的能力;

  (5)通过等边三角形是等腰三角形的特例,渗透一般与特殊的辩证关系.

   教学重点:三角形三边关系定理及推论

   教学难点:三角形按边分类及利用三角形三边关系解题

   教学用具:直尺、微机

   教学方法:谈话、探究式

   教学过程:

  1、阅读新课,回答问题

  先让学生阅读教材的第一部分,然后回答下列问题:

  (1)这一部分教材中的数学概念有哪些?(指出来并给予解释)

  (2)等腰三角形与等边三角形有什么关系?

  估计有的学生可能把等腰三角形和等边三角形看成独立的两类.

  (3)写出三角形按边的相等关系分类的情况.

  教师最后板书给出.

  (要求学生之间可互相补充,从一开始就鼓励双边交流与多边交流)

  2、发现并推导出三边关系定理

  问题1:用长度为4cm、 10cm 、16cm的线绳(课前准备好的)能否搭建一个三角形?(让学生动手操作)

  问题2:你能解释上述结果的原因吗?

  问题3:任何三条线段都能组成一个三角形吗?满足什么条件时,三条线段可组成一个三角形?

  定理:三角形两边的和大于第三边

  (发现过程采用小步子原则,让学生在不知不觉中发现数学中的真理)

  3、导出三边关系定理的推论及其它两种方法

  由前面得到了判断所给三条线段能否组成三角形的一个依据.那么是否还有其它方法呢?请同学们在定理的基础上来找:

  估计学生很容易得到推论,让学生用自己的语言叙述,教师稍加整理后给出规范叙述.

  推论:三角形两边的差小于第三边

  (给每一个学生表现个人数学语言表达才能的机会)

  能否简化上面定理及推论?从而得到如下两种判定方法:

  (1)、已知线段,( ),若第三条线段c满足- c则线段, ,c可组成一个三角形.

  4、三角形三边关系定理及推论的应用

  例1判断题:(出示投影)

  (1)等边三角形是等腰三角形

  (2)三角形可分为不等边三角形、等腰三角形和等边三角形

  (3)已知三线段满足,那么为边可构成三角形

  (4)等腰三角形的腰比底长

  (本例主要考察学生对概念、定理及推论的理解程度,不要求做在本上,只需口答即可)

  (本例要求学生说出解题思路,教师点到为止)

  例3一个等腰三角形的周长为18 .

  (1)已知腰长是底边长的2倍,求各边长.

  (2)其中一边长4,求其他两边长.

  这是一道有课堂练习性质的例题,允许学生有3分钟左右的独立思考,允许想出来的同学表达自己的想法,其它同学补充完善.

  (数学教师的课堂教学应该是敢于放手,尽可能多地给学生创造展示自己的思维空间和时间)

  例4草原上有4口油井,位于四边形ABCD的4个顶点,

  如图1现在要建一个维修站H,试问H建在何处,

  才能使它到4口油井的距离HA+HB+HC+HD为最小,

  说明理由.

  本例有一定的难度,给出的方法是解决此类型问题常见的极为简捷的方法,略微构造就可以使用三角形三边关系定理得出答案.

  5、小结

  本节课我们学习了三角形三边关系的定理和推论,还知道了定理和推论的一系列灵活运用:

  (1)判断三条已知线段能否组成三角形

  采用一种较为简便的判法:若最短边与较长边的和大于最长边,则可构成三角形,否则不能.

  (2)确定三角形第三边的取值范围

  两边之差

  若时间宽裕,让学生经讨论后自由表述,其他同学补充,自己将知识系统化,以自己的方式进行建构.

  6、布置作业

  a.书面作业P41#8、9

  b.思考题:1、在四边形ABCD中,AC与BD相交于P,求证:

  (AB+BC+CD+AD)

  2、用15根等长的火柴棒摆成的三角形中,最长边最多可以由几根火柴棒组成?(提示:由上面方法2,a+b+c>2a又a+b+c

等腰三角形课件(篇2)

   教学目标

  1、掌握证明的基本步骤和书写格式。

  2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的关性质定理和判定定理。

  3、结合实例体会反证法的含义。

   教学重点

  等腰三角形的关性质定理和判定定理。

   教学难点

  能够用综合法证明等腰三角形的关性质定理和判定定理。

   教学方法

  教学后记

   教学内容及过程

  教师活动学生活动

   一、等腰三角形性质的探究

  1.让学生回忆上节课的教学内容,引导学生思考从等腰三角形中能找到哪些相等的线段。

  2.播放课件,结合刚才的问题讲解例1的命题,并为后面将此性质拓展埋下伏笔。

  3.分别演示:

  ∠ABC,∠ACE=∠ACB,k=,时,BD是否与CE相等。引导学生探究、猜测当k为其他整数时,BD与CE的关系。

  4.引导学生探究,对于上述例题,当AD=AC,AE=AB,k=,时,通过对例题的引申,培养学生的发散思维,经历探究—猜测—证明的学习过程。

  5.引导学生进一步推广,把上面3、4中的k取一般的自然数后,原结论是否仍然成立?要求学生说明理由或给出证明。

  6.对学生探究的结果予以汇总、点评,鼓励学生在自己做题目的时候也要多思多想,并要求学生对猜测的结果给出证明。

  7.提出新的问题,引导学生从“等角对等边”这个命题的反面思考问题,即思考它的逆命题是否成立。适时地引导学生思考可以用哪些方法证明?培养学生的推理能力。

  8.归纳学生提出的各种证法,清楚的分析证明的思路,培养学生演绎证明的初步的推理能力。

  9.启发学生思考:在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等,这个结论是否成立?如果成立,能否证明。这实际上是“等边对等角”的逆否命题,通过这样的表述可以提高学生的思维能力。

  10.总结这一证明方法,叙述并阐释反证法的含义,让学生了解。

  11.小结这两个课时的内容。

   作业:

  同步练习

   板书设计:

  1.积极思考,回忆以前所学知识,联想新问题。

  2.认真观看例1图形中线段的关系,积极思考,认真听讲。

  3.对于课件的演示很感兴趣,凭直观感觉可以猜测,不管k为何值,BD=CE总成立。基于前面例题的.启发,想要给出证明。一部分学生可以自己给出证明,一部分学生需要老师的帮助。

  4.在已经探究了角的大小的改变对于BD,CE的等长性没有影响,有了一些成就感之后,又面临新的任务:BD=CE吗?因此学生会满怀热情地进行这部分探究活动,而且有了前面的体验,探究也会比较顺利。

  5.兴致高涨,凭直觉猜测结论仍然成立。但有些学生给出全部证明可能会有困难。

  6.认真听讲,在掌握结论的同时受到老师的鼓励,有很高的热情进行后续学习。

  7.较少接触这样的命题,因此会感到新鲜,有用已知公理和定理对命题的真假性进行判断的欲望。在老师指导下完成证明。

  8,积极动脑思考,认真听讲,获得对演绎证明的初步体会。

  9.可以从直观上得出结论,但是此处要求证明,体会到证明的必要性。遇到认知上的冲突,激起学习欲望。

  10.怀有强烈的求知欲听讲,对反证法有了感性认识和一定的理解。

  11.体会老师的讲解,并根据小结记忆掌握知识。

  (学生小结:掌握证明的基本步骤和书写格式。经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的两条腰上的中线(高)、两底角的平分线相等,并由特殊结论归纳出一般结论。等腰三角形的判定定理。了解反证法的推理方法。)

等腰三角形课件(篇3)

  教学目标:

  1.掌握等腰三角形的判定定理及推论,并能够灵活应用它进行有关论证和计算。

  2.发展学生的动手、归纳猜想能力;发展学生证明用文字表述的几何命题的能力;使它们进一步掌握归纳思维方法,领会数学分类思想、转化思想。

  3.发展学生独立思考、勇于探索的创新精神和关于数学内容间普遍存在的相互联系、相互转化的观点。

  教学重点:

  等腰三角形的判定定理及应用 。

  教学难点:

  等腰三角形的性质定理与判定定理的区别 。

  ②等腰三角形的顶角平分线、底边中线、底边高线互相重合。(三线合一)

  二、新课过程:

  例题:已知:在△ABC中,∠B=∠C(如图)。求证:AB=AC.

  师:分析,请大家思考。 利用学过的知识证明。  (大部分学生能做出来。等大部分学生思考出来时,抽成绩差的学生说出解题过程。)

  生:要证明AB=AC,转化先证明△ABD≌△ADC即可。(我们要证明的两条线段若在两个三角形中,则思考的一个方向是去证明三角形全等。若这两条线段是在同一个三角形中,则一个思考方向是证明它是等腰三角形。 )

  由角角边得,△ABD≌△ADC,故AB=AC。

  师:对,这个今天我们要学习的等腰三角形的判定。这位同学说的很好,注意:是在同一个三角形中。

  例2:已知:如图,∠CAE是△ ABC的外角,∠EAD=∠EAC,AD∥BC。 求证:AB=AC (留时间给学生观察、思考。班上大部分学生能做出来,找同学到黑板板书。)

  又∵AD∥BC,

  ∴∠EAD=∠B,∠EAC=∠C,

  师:这位同学做的对不?做的和他相同的同学请举起手。做这个题目中,用了什么知识?

  师:刚才大家七嘴八舌说了很多,说得很好。(至此课堂很活跃。)刚才我听到有的同学说很简单,我也这样认为这例题并不难,但难题来自于简单的组合,奥秘隐藏于简单之中,还要仔细分析,这题能够给我们带来怎样的收获。

  生:证明两个边相等又多了一种方法,等角对等边。

  师:对,这个同学说的很好,证明两个边相等除了证明两个边所在的两个三角形全等以外还可以利用等角对等边。同时等角对等边还可以用来证明等腰三角形。

  师:学习了上面的例题请同学们试着理解一下,如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形。

  师:对,数学、数学,我们经常用数学语言来说明问题。

  师:问得很好。在这里,我们首先应该把这些文字转化成数学语言,即写出已知和求证,然后再证明。今后,我们在思考问题时,按我们的规律进行思考,将大大推进我们对问题的思考。下面学生完成巩固练习部分,检查一下今天你的收获。

  1.如图,∠A=36°,∠DBC=36°,∠C=72°,分别计算∠1、∠2的度数,并说明图中有哪些等腰三角形。

  2.已知:如图,AD∥BC,BD平分∠ABC. 求证:AB=AD.

  师:请同学们认真思考,能独立完成的'同学请举手。(学生思考,思考如何去做。两、三分钟后,大部分学生已经能做出。)

  生:第一题利用等角对等边可得∠1=72°,∠2=36°,图中-共有3个等腰三角形。

  生:第二题要先证明∠ABD=∠ADB,然后利用等角对等边得到AB=AD。

  师:这两个同学分析的很好,给大家5分钟时间自己完成。(找两个同学来黑板完成)

  师:既然学习了等腰三角形,那么怎么画它呢?同学们试着用尺规画一个等腰三角形ABC,使得底边BC为4cm,底边上的高AD为5cm。

  生:很容易,不用圆规,直尺和三角板就好了。先画一条BC=4cm,然后取中间2cm部分点D,用三角板过D做垂线,在垂线在取AD=5 cm。然后连接AB、AC,就得到等腰三角形了。

  师:好,生活往往不一帆风顺,学习也是一样,如何按照要求用直尺和圆规来画等腰三角形呢?

  (1)作线段BC=4cm;

  (2)作线段BC的垂直平分线ED,与BC交于点D;

  (3)在ED上截取AD=5cm;

  (4)连接AB、AC,△ABC就是所求的等腰三角形,

  师:好,同学们仿照刚才做法,自己动手做出等腰三角形,然后完成例题3.

  例3:如图(1),标杆AB的高为5米,为了将它固定,需要由它的中点C向地面上与点B距离相等的D、E两点拉两条绳子,使得D、B、E在一条直线上,量得DE=4米,绳子CD和CE要多长?

  (1)作线段DE=4cm;

  (2)作线段DE的垂直平分线MN,与DE交于点B;

  (3)在MN上截取BC=2.5cm;

  (4)连接CD、CE,△CDE就是所求的等腰三角形,量出CD的长,就可以算出要求的绳长。

  师:好,今天就学习这些知识,请同学们自己回忆总结。

  生:证明等腰三角形的方法还有等腰三角形的定义。

  师:好,这些同学总结的很好,数学知识是很奇妙的,生活中经常遇到,如果同学们以后遇到生活中数学问题不知道怎么办,可以随时找老师帮忙。今天我们就学习这么多知识,下面时间同学们检测一下自己今天的学习,完成讲学稿上自我检测部分。

等腰三角形课件(篇4)

  今天我说课的内容是人教版初中数学八年级上册第十二章第三节“等腰三角形”第二课时的内容:“等腰三角形的判定”,我将围绕教材分析、教法分析、学法分析、教学过程、板书设计说个方面来进行说课。

  一、 说教材分析

  1、本节课的地位与作用

  等腰三角形的判定是初中数学的一个重要定理,也是本章的重点内容。本节内容是在学生已有的平行线性质、命题以及等腰三角形的性质等知识基础上进一步研究的问题。特点之一是它揭示了同一个三角形的边、角关系;特点之二是它与等腰三角形的性质定理互为逆定理;特点之三是它为我们提供了证明两条线段相等的新方法,为以后的学习提供了证明和计算依据,有助于培养学生思维的灵活性和广阔性。所以本段教材承上启下、至关重要。

  2、教学目标:

  根据新课程标准的基本理念,结合八年级数学教材结构和学生的认知结构心理特征.我将本节的教学目标设计为三个方面:

  知识与技能:会阐述、证明等腰三角形的判定定理。

  过程与方法:学会比较等腰三角形性质定理和判定定理的联系与区别。

  情感态度与价值观:经历综合应用等腰三角形性质定理和判定定理的过程,体验数学的应用价值。

  3、教学重点:等腰三角形的判定定理的探索和应用。

  4、教学难点:等腰三角形的判定与性质的区别。

  5、教具准备:作图工具和多媒体课件。

  二、 说教法分析

  新课程理念强调我们的课程不仅是文本课程,更是体验课程,它不再是知识的载体,而是教师和学生共同探究新知的过程;使教学成为一种对话、交往,一种沟通,合作与共建。教师不仅要传授知识,更要与学生一起分享对课程的理解。因此,本节课我主要采用两种教法:

  1、引导探索法:在数学教学中,作为教师应善于引导学生去观察、去分析、去归纳、去总结,从而培养学生主动求知的探索精神。

  2、情景教学法:数学课程的特点之一是内容抽象,而多媒体在数学教学中的应用可以较好的解决这个难题。我在教学中充分运用远教资源中的媒体资源设计出可视的图形运动轨迹,帮助学生理解教材意图。

  三、说学法分析

  本节课按照质疑、猜想、验证的学习过程,遵循学生的认知规律,让学生感受由实践到理论再到实践的学习过程,也体现了数学源于生活,而又服务于生活的基本理念。本节课将着力培养学生的实践探究能力、合作交流和抽象概括能力。

  四、说教学过程

  我现将本节课的教学目标展示给学生,让学生做到心中有数,再展示出自学指导,让学生带着问题看书,加强自主探索的能力。

  本节课的教学过程分为创设情境——激发兴趣、提出问题——大胆猜想、讨论交流——探索分析、科学引导——得出结论、反馈教学——加深理解、拓展延伸——综合运用六大教学版块。

  1、创设情境——激发兴趣

  我结合课本中的实际问题引入课题,并出示大屏,展示这一实际问题,再结合形象的图形展示给学生。“如图,位于在海上A、B两处的两艘救生船接到O处的遇险报警,当时测得∠A=∠B。如果这两艘救生船以同样的速度同时出发,能不能大约同时赶到出事地点(不考虑风浪因素)?” 通过学生观察、思考,产生悬念,使学生从生活走进数学,自然地渗透数学来源于生活的思想。

  2、提出问题——大胆猜想

  我首先引导学生将实际问题转化为数学问题,即:在一个三角形中,如果有两个角相等,那么他们所对的边有什么关系? 通过问题的提出,引导学生写出已知、求证,并根据已知条件画出图形。

  3、讨论交流——探索分析

  然后我设计了一个学生活动,让学生画一个有两个角相等的三角形。在教学中,我引导学生自己选择不同的方法来观察,通过他们实际动手折叠与测量,学生不难结合前面所学的知识发现两边的关系,看它的两条边有什么关系?再引导他们分组讨论、交流和分析,应该采用什么方法来判断它?说一说你的想法?

  4、科学引导——得出结论

  在教学中,我针对学生的讨论情况,结合教材实际,引用了远教资源中的媒体展示,让学生更加直观形象的感知这一过程,再引导学生通过两种方法来解决问题,方法一:过点A作AD平分∠A得到∠1=∠2 ,从而推出△ABD≌ △ACD,证明AB=AC。方法二:过点A作AD⊥BC得到∠ADC=∠ADB,从而推出△ABD≌ △ACD,证明AB=AC。通过两种不同方法的推证,我再引导学生用数学语言来总结这一规律,针对学生的发言进行点评,给出提示,达成共识后得到结论。

  5、反馈教学——加深理解

  在学生得出这一结论之后,我再给出课前提出的救生船问题,让学生运用所学知识反馈于教学,用数学知识来解决生活中的实际问题,此时,学生就不难发现两行船将同时到达O点,同时我用了一道典型例题,本题也是课本中的例2,旨在考查学生对平行线性质定理和等腰三角形判定定理的综合运用,以进一步加深学生对等腰三角形判定定理的理解和运用。

  6、拓展延伸——综合运用

  这一题型的设计将等腰三角形的性质定理与判定定理有机的结合起来,重在培养学生对两个知识点的综合运用,鼓励学生积极思考,勇于探索。

  7、课堂小结

  在小结部分,我提出两个问题:一是学到了什么知识?二是这个知识有什么作用。通过问题的设计引导学生归纳出学习内容。

  五、说板书设计

  本节课的板书设计,主要围绕等腰三角形的判定定理的探索和归纳来展开教学。

  说课综述:本节课的教学设计,力求为学生创造一种宽松、和谐、适合发展的学习环境,创设一种有利于思考、讨论、探索的学习氛围。本节教学充分发挥远教资源的便利,在例题的设计上、在思考题、拓展练习的编排上,在教学重难点的突破上,合理而有效的使用了远教资源,使数学教学与远教资源的运用形成新的整合模式。整个教学环节层层推进、步步深入,融基础性、灵活性、实践性、开放性于一体,注重调动学生思维的积极性,把知识的形成过程转化为学生质疑、猜想和验证的过程。使学生在获得知识的同时提高兴趣、增强信心、提高能力

等腰三角形课件(篇5)

  一、教材分析

  1.教材的地位与作用:

  等腰三角形的性质是新人教版八年级数学第十三章第三节的内容,它是在认识了轴对称性质以及了解了全等三角形的判定的基础上进行的。主要学习等腰三角形的"等边对等角"和"等腰三角形的三线合一"本节内容既是前面知识的深化和应用,又是今后学习等边三角形的预备知识,还是今后证明角相等、线段相等及两直线互相垂直的依据,因此本节课具有承上启下的重要作用。

  2.教学目标:

  知识目标:了解等腰三角形的性质,会利用等腰三角形的性质,进行简单的推理、判断、计算作用。

  能力目标:从设置问题?模型演示?自己动手探究发现等腰三角形的性质,培养学生的观察力、实验推理能力。

  情感目标:要求学生在学习中运用发现法,体验几何发现的乐趣,在实际操作动手中感受几何应用美。

  3.教学重点与难点

  重点:等腰三角形两底角相等,等腰三角形三线合一。因为等腰三角形的性质是今后学习线段垂直平分线的基础,也是今后论证角、边相等的重要依据,所以是本节教学的重点。

  难点:等腰三角形三线合一的推理应用

  二、教法与学法

  教法:我采用探索发现法完成本节的教学,在教学中以学生参与为主,便于激发学生学习热情,体验成功的喜悦,通过直观的演示和学生自己动手使学生在获得感性知识的同时,为掌握理性知识创造条件,这样更有利于调动学生积极性,激发学生兴趣,使学生变被动学习为积极主动愉快学习,也符合数学教学的直观性和可接受性。

  学法:在教学中,把重点放在学生如何学这一方面,我认为通过直观演示,得到感性认识,学生在学习中运用发现法,开拓自己的创造性思维,实现由学生自己发现感受"等腰三角形的性质"通过学生自己看、想、议、练等活动,让学生自己主动"发现"几何图形的性质,而不是老师灌输几何图形的性质,这样做有利于活跃学生的思维,帮助他们探本求源,让每位学生都学有价值的数学。

  三、教学过程:

  (一)出示教学目标

  知识目标:了解等腰三角形的性质,会利用等腰三角形的性质,进行简单的推理、判断、计算作用。

  能力目标:从设置问题?模型演示?自己动手探究发现等腰三角形的性质,培养学生的观察力、实验推理能力。

  情感目标:要求学生在学习中运用发现法,体验几何发现的乐趣,在实际操作动手中感受几何应用美。

  让学生明白本节课的重要知识点和自己需要掌握的主要知识,做到有的放矢。

  (二)直观演示,大胆猜想

  观察含有等腰三角形图片,让学生从感性上认识等腰三角形,激发学生的兴趣。

  由学生自己动手折纸游戏,演示等腰三角形轴对称变换,大胆猜测等腰三角形的性质,这种直观的低起点的方式引入新课更能提高学生兴趣,激发他们的求知欲,让每位学生都涌跃参与,领悟数学学习的价值。

  (二)证明猜想,形成定理。

  1△ABC中,AB=AC,求证:∠B=∠C

  思考:1如何证明你的猜想?〔讲述一种证明方法:作顶角的平分线〕

  2有其它的方法吗?试试看,用不同的方法证明这个结论。

  让学生4人一组分组合作,在组与组之间合作,通过作辅助线,共同寻找全等三角形,相等的角,相等的边,体现学生组内合作,组与组之间的合作,让学生自己主动证明猜想,同时有也有利于学生对全等三角形的判定的巩固,既运用以旧引新的推理方式,又体现由特殊到一般的思维认识规律。采用这种探索发现的方式,让学生通过对直观图形的观察猜想,实验证明去揭示定理。同时也展示了猜想--证明这一数学认知基本方法。

  2交流反馈,共同完成本节重要知识点的证明。

  通过看幻灯片,让学生感性上认识等腰三角形性质〔等腰三角形三线合一〕,既锻炼学生的发散思维能力,又可提高学生的表述水平。

  3小结:根据等腰三角形的性质填空。

  (1)如果AB=ACAD是角的平分线那么......

  (2)如果AB=ACAD⊥BC那么......

  (3)如果AB=ACBD=CD那么......

  总结,积累知识点,从理性上认识等腰三角形的性质,形成知识体系。

  (三)应用举例,强化训练

  为进一步深化巩固对新知识的理解,使新知识转化成技能,在教学中我遵循由线入深,循序渐进的原则安排以下练习,以求完成教学目标。

  通过这一环节的题目训练,有利于激发学生探索精神,养成灵活运用新知识,敢干运用新知的跳跃精神。

  四、归纳小结

  为了使学生对所学知识有一个完整而深刻系统的认识,我让学生畅所欲言,谈体会、谈收获,让学生自己结合本节教学目标,发现在学习中学会了什么及还存在哪些问题。这样有利于学生学习后养成及时反思的习惯。

  等腰三角形的性质教学反思

  安排一课时学习等腰三角形的性质,内容很多,课堂容量很大,本课教学后,有很多方面需要总结。

  在证明性质时,不再有同学直接用性质证明性质了,这是一个很大的进步,用三种方法研究性质的证明,要用到小组交流,比较发现有三种方法:取中点,用“SSS”证明全等;作垂线,用“HL”证明全等;作角平分线,用“SAS”证明全等。通过这样的教学设计,一方面,体会了辅助线不同的作法,就有不同的证法;另一方面,为性质2“三线合一”的教学提供了方便。不足的是,课堂交流的面可以更宽些。

  性质2的应用比较多,初学者往往不能灵活应用这条性质优化证题途径,因此要解读这条性质,由图形训练和规范符号语言,把性质一句话改写成三句话或者六句话,一句话是“等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合”,三句话是“1等腰三角形的顶角平分线平分底边、垂直于底边,2等腰三角形的底边上的中线平分顶角、垂直于底边,3等腰三角形的底边上的高平分顶角、平分底边”,六句话是“1等腰三角形的顶角平分线平分底边,2等腰三角形的顶角平分线垂直于底边,3等腰三角形的底边上的中线平分顶角,4等腰三角形的底边上的中线垂直于底边,5等腰三角形的底边上的高平分顶角,6等腰三角形的底边上的高平分底边”,结合图形概括起来就是:在△ABC中,AB=AC,下列论断①∠BAD=∠CAD,②BD=CD,③AD⊥BC中,有一条成立,另外两条就成立,分六句话,写出推理语言。这里设计了一组填空题,有利于性质2的应用。学生能够整齐地叙述,但还需进一步巩固。

  性质在计算中的应用,涉及到方程思想和分类讨论思想,课堂上的训练不是太充分的,没有安排同学在黑板上板演,主要培养了学生讨论和自觉纠错的学习习惯。

  本节课的两个性质全部是由学生折纸,自主猜想出来,老师几乎没有提示,学生自主探究能力得到很大的提升。此外。本节课的PPT制作效果好,能准确引导学生的探究方向,在展示性质证明的过程中,起到了很好的作用。学生学习热情高,课堂氛围好。

等腰三角形课件(篇6)

  等腰三角形判定

   教学目标

  (一)教学知识点

  探索等腰三角形的判定定理.

  (二)能力训练要求

  通过探索等腰三角形的判定定理 及其例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;

  (三)情感与价值观要求

  通过对等腰三角形的判定定理的探索,让学生体会探索学习的乐趣,并通过等腰三角形的判定定理的简单应用,加深对定理的理解.从而培养学生利用已有知识解决实际问题的能力.

   教学重点

  等腰三角形的判定定理的探索和应用。

   教学难点

  等腰三角形的判定与性质的区别。

   教具准备

  作图工具和多媒体课件。

   教学方法

  引以学生为主体的讨论探索法;

   教学过程

  Ⅰ.提出问题,创设情境

  1.等腰三角形性质是什么?

  性质1 等腰三角形的两底角相等.(等边对等角)

  性质2等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合.

  (等腰三角形三线合一)

  2、提问:性质1的逆命题是什么?

  如果一个三角形有两个角相等, 那么这个三角形是等腰三角形。 这个命题正确吗?下面我们来探究: Ⅱ.导入新课

  大胆猜想:

  如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简称“等角对等边”). 由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法.

  [例1]已知:在△ABC中,∠B=∠C(如图).

  求证:AB=AC. 教师可引导学生分析:

  BA12DC联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形.因为已知∠B=∠C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起.再让学生回想等腰三角形中常添的辅助线,学生可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC. (学生板演证明过程)

  证明:作∠BAC的平分线AD. 在△BAD和△CAD中

  ??1??2,? ??B??C,

  ?AD?AD,? ∴△BAD≌△CAD(AAS).

  ∴AB=AC.

  提问:你还有不同的证明方法吗?(由学生口述证明过程)

  等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).

  符号语言:在△ABC中 ∵ ∠B=∠C ∴ AB=AC (等角对等边)

  4、等腰三角形的性质与判定有区别吗? 性质是:等边 等角 判定是:等角 等边

  小结:证明三角形是等腰三角形的方法:①等腰三角形定义;②等腰三角形判定定理.

  下面我们通过几个例题来初步学习等腰三角形判定定理的简单运用.

  (演示课件)

  [例2]求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.

  这个题是文字叙述的证明题,?我们首先得将文字语言转化成相应的数学语言,再根据题意画出相应的几何图形.

  已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC(如图).

  求证:AB=AC.

  同学们先思考,再分析.(由学生完成)

  要证明AB=AC,可先证明∠B=∠C.

  接下来,可以找∠B、∠C与∠

  1、∠2的关系.

  (演示课件,括号内部分由学生来填)

  证明:∵AD∥BC,

  ∴∠1=∠B(两直线平行,同位角相等),

  ∠2=∠C(两直线平行,内错角相等).

  又∵∠1=∠2,

  ∴∠B=∠C,

  ∴AB=AC(等角对等边).

  看大屏幕,同学们试着完成这个题.

  (课件演示)

  已知:如图,AD∥BC,BD平分∠ABC.

  求证:AB=AD.

  (投影仪演示学生证明过程)

  证明:∵AD∥BC,

  ∴∠ADB=∠DBC(两直线平行,内错角相等).

  又∵BD平分∠ABC,

  ∴∠ABD=∠DBC,

  ∴∠ABD=∠ADB,

  ∴AB=AD(等角对等边).

  下面来看另一个例题.

  (演示课件)

  ? 例

  2、已知等腰三角形的底边等于a,底边上的高等于b,你能用尺规作图的方法作出

  EA12DBCADBCM A

  这个等腰三角形吗? a

  b

  作法:(1)作线段BC,使BC=a;

  (2)作BC的垂直平分线MN,交BC于D; (3)在MN上截取DA=h,得A点;

  (4)连结AB、AC,则△ABC即为所求等腰三角形。

  例

  3、思考:在△ABC中,已知,BO平分∠ABC,CO平分∠ACB.过点O作直线EF//BC交AB于E,交AC于F.(1)请问图中有多少个等腰三角形?说明理由.(2)线段EF和线段EB,FC之间有没有关系?若有是什么关系?

  Ⅲ.随堂练习

  (一)课本P79

  1、

  2、

  3、4.

  Ⅳ.课时小结

  1、等腰三角形的判定方法有下列几种: ①定义,②判定定理。

  2、等腰三角形的判定定理与性质定理的区别是:条件和结论刚好相反。

  3、运用等腰三角形的判定定理时,应注意 在同一个三角形中。 Ⅴ.作业布置:

  学力水平:必做42页 1------7题

  选做 42页 8-----10题

  4 12.

  3.1.2 等腰三角形判定

等腰三角形课件(篇7)

   教学目标

  1、掌握证明的基本步骤和书写格式。

  2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的关性质定理和判定定理。

  3、结合实例体会反证法的含义。

   教学重点

  等腰三角形的关性质定理和判定定理。

   教学难点

  能够用综合法证明等腰三角形的关性质定理和判定定理。

   教学方法

  教学后记

   教学内容及过程

  教师活动学生活动

   一、等腰三角形性质的探究

  1.让学生回忆上节课的教学内容,引导学生思考从等腰三角形中能找到哪些相等的线段。

  2.播放课件,结合刚才的问题讲解例1的命题,并为后面将此性质拓展埋下伏笔。

  3.分别演示:

  ∠ABC,∠ACE=∠ACB,k=,时,BD是否与CE相等。引导学生探究、猜测当k为其他整数时,BD与CE的关系。

  4.引导学生探究,对于上述例题,当AD=AC,AE=AB,k=,时,通过对例题的引申,培养学生的发散思维,经历探究—猜测—证明的学习过程。

  5.引导学生进一步推广,把上面3、4中的k取一般的自然数后,原结论是否仍然成立?要求学生说明理由或给出证明。

  6.对学生探究的结果予以汇总、点评,鼓励学生在自己做题目的时候也要多思多想,并要求学生对猜测的结果给出证明。

  7.提出新的问题,引导学生从“等角对等边”这个命题的反面思考问题,即思考它的逆命题是否成立。适时地引导学生思考可以用哪些方法证明?培养学生的推理能力。

  8.归纳学生提出的各种证法,清楚的分析证明的思路,培养学生演绎证明的初步的推理能力。

  9.启发学生思考:在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等,这个结论是否成立?如果成立,能否证明。这实际上是“等边对等角”的逆否命题,通过这样的表述可以提高学生的思维能力。

  10.总结这一证明方法,叙述并阐释反证法的含义,让学生了解。

  11.小结这两个课时的内容。

   作业:

  同步练习

   板书设计:

  1.积极思考,回忆以前所学知识,联想新问题。

  2.认真观看例1图形中线段的关系,积极思考,认真听讲。

  3.对于课件的演示很感兴趣,凭直观感觉可以猜测,不管k为何值,BD=CE总成立。基于前面例题的启发,想要给出证明。一部分学生可以自己给出证明,一部分学生需要老师的帮助。

  4.在已经探究了角的大小的改变对于BD,CE的等长性没有影响,有了一些成就感之后,又面临新的任务:BD=CE吗?因此学生会满怀热情地进行这部分探究活动,而且有了前面的体验,探究也会比较顺利。

  5.兴致高涨,凭直觉猜测结论仍然成立。但有些学生给出全部证明可能会有困难。

  6.认真听讲,在掌握结论的同时受到老师的鼓励,有很高的热情进行后续学习。

  7.较少接触这样的命题,因此会感到新鲜,有用已知公理和定理对命题的真假性进行判断的欲望。在老师指导下完成证明。

  8,积极动脑思考,认真听讲,获得对演绎证明的初步体会。

  9.可以从直观上得出结论,但是此处要求证明,体会到证明的必要性。遇到认知上的冲突,激起学习欲望。

  10.怀有强烈的求知欲听讲,对反证法有了感性认识和一定的理解。

  11.体会老师的讲解,并根据小结记忆掌握知识。

  (学生小结:掌握证明的基本步骤和书写格式。经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的两条腰上的中线(高)、两底角的平分线相等,并由特殊结论归纳出一般结论。等腰三角形的判定定理。了解反证法的推理方法。)

等腰三角形课件(篇8)

   一、教学内容

  本单元教学三角形的相关知识,这是在学生直观认识过三角形的基础上教学的,也是以后学习三角形面积计算的基础。内容分五段安排:第一段通过例1、例2第22~25页形成三角形的概念教学三角形的基本特征,三角形的高和底;第二段通过第26~27页教学三角形的分类,认识锐角三角形、直角三角形和钝角三角形;第三段第28~29页通过例4教学三角形的内角和;第四段通过第30~32页例5、例6认识等腰三角形和等边三角形及其特征。第五段第33~34页单元练习。全面整理知识,突出三角形的分类以及关于边和角的性质。

  教材中的思考题有较大的思维容量,能促进学生进一步理解并应用三角形的知识。编写的三篇“你知道吗”介绍三角形的稳定性、制作雪花图案的方法和埃及的金字塔,能激发学生学习三角形的兴趣,丰富对三角形的认识。

   二、教材编写特点和教学建议

  1、让学生在“做”图形的活动中感受三角形的形状特点和结构特征。

  空间与图形的概念教学,一般要让学生经历感知——表象——形成概念的过程,教材注意按学生的认识规律安排教学过程。学生在第一学段直观认识了三角形,本单元继续教学三角形的知识,教材经常采用“活动——体验”的教学策略,即组织学生“做”图形,让他们在做的过程中体会图形的特点,主动构建对图形的比较深入的认识。

  (1) “做”三角形,感受边、角和顶点。第22页例题教学三角形的边、角和顶点,分三个层次编写:首先呈现一幅宜昌长江大桥的照片,引起学生对三角形的回忆,并联系生活里的三角形进行交流,感知三角形;;然后安排学生想办法做每人至少“做”一个三角形并在小组里交流进一步强化表象;;最后讲解三角形的边、角和顶点。

  学生“做”三角形并不难,做的方法必定是多样的。用小棒摆、在钉子板上围、在方格纸上画三角形在第一学段都曾经做过,现在学生还可能剪、折、拼……“做”三角形的目的不在结果,要注重学生在做的过程中是怎样想的、怎样做的,把精力放在建立边、角和顶点等概念上。所以,交流的时候要分析各种做法的共同点,如用三根小棒、三段细绳、三条线段……才能“做”成三角形,三角形有三条边;小棒、细绳、线段……必须两两相连,三角形有三个顶点和三个角。

  (2)围三角形,体会两条边的长度和必须大于第三边。《标准》要求:

  通过观察、操作,了解三角形的两边之和大于第三边。这是新课程里增加的教学内容,第23页例题教学这个知识。教材通过学生的具体体验来使学生知道这一点。首先,为学生提供四根长度分别是10cm、6cm、5cm、4cm的小棒,向学生提出问题:任意选三根小棒,能围成一个三角形吗?然后让学生在操作中发现有时能围成三角形,有时围不成三角形,并直觉感受这是为什么。最后通过比较每次选用的三根小棒的长度,找到原因、理解规律。

  例题的编写特点是不把知识结论呈现给学生,而让学生在“做”图形活动中发现现象、研究原因、体会规律。因此,教学这道例题时要注意三点:第一,课前作好充分的物质准备,力求让每一名学生都有长10cm、6cm、5cm、4cm的四根小棒。第二,课上要让学生自由地选择小棒,充分地围,经历围成和围不成三角形的过程,并给学生提供思考“为什么”的时间。第三,要引导学生从直觉感受上升到理性认识。在用小棒围的时候,他们的直觉感受是如果两根较短的小棒的另一端能够碰到一起,就围成了三角形;如果不能碰到一起,就围不成三角形。这种直觉感受是必要的,但不是最终的。要在直觉感受的基础上,进一步对三根小棒的长度进行分析研究,这才是“数学化”的过程,才能在获得数学结论的同时又学习用数学的方法进行思考。

  (3)对图形量、剪、折,亲身感知并认识体会等腰三角形、等边三角形的特点。第30页的两道例题分别教学等腰三角形和等边三角形,认识等腰三角形和等边三角形,首先要感知各自的特点,教材注意突出教学的这一过程。都分三个层次教学:

  第一层次是通过学生量三角形边的长度,理解“等腰”“等边”的含义;第二层次是仿照例题示范的方法剪出一个等腰三角形和一个等边三角形,继续体会它们的边的长度关系;第三层次是给出等腰三角形各部分的名称,发现等腰三角形、等边三角形的角的大小关系。其中第二层次的教学比较难。两道例题里“茄子”和“白菜”提的问题不同,前一道例题的问题是“用下面的方法剪成的三角形是等腰三角形吗”,因为学生容易看懂图文结合表述的剪法,通过这个问题引导学生关注到两条腰是同时剪的,长度肯定相同。后一道例题的问题是“你会像下面这样剪出一个等边三角形吗”,因为学生不容易看懂教材展示的方法,教材希望通过这个问题引导学生先研究剪法、弄懂剪法。关键在找到那个红色的点,先对折又斜折是为了让三条边的长度都相同。

  2、从已有经验中提炼数学概念。

  在具体的感性材料里提取本质特征,形成理性认识是概念教学的渠道之一。丰富的感性经验与清晰地认识特征是建立正确概念的前提。

  (1)循序渐进,帮助学生逐步理解三角形的高。三角形的底和高是三角形里的重要概念,为了让学生自己感受底和高,教材用人字梁为素材,利用学生在生活中对人字梁“高度”的认识进行测量,感受三角形人字梁的高,以此为基础引入三角形高的概念。第24页例题、“试一试”以及“想想做做”里的部分习题把三角形高的教学分成四步进行:

  第一步让学生量出人字梁图形的高度是多少厘米。这里讲的“高”度还是生活中的高,是从上往下竖直的距离。虽然与数学里的高含义不同,但也有相似的地方——垂直的、最短的。设计这一步教学的目的是唤醒已有的生活经验,营造认识三角形高的基础。第二步结合图形讲述三角形的高。学生对教材里的一段话,既要联系人字梁的高来体会,又要超越人字梁这个具体实物比较概括地理解。联系人字梁的高能降低理解概念内涵的难度,超越人字梁具体实物才能形成真正的数学概念。教材表述的是三角形高的描述式定义,描述了高的位置,描述了画高的方法。教学时可以把教师边画边讲与学生边描边体会相结合,重在对概念的理解,不要死记硬背。第三步通过“试一试”扩大概念的外延。数学里平面图形的高的本质属性是“垂直”而不是“竖直”,竖直是“从上往下”,垂直是“相交成直角”。例题教学三角形的高先从竖直的位置讲起,“试一试”举出各种摆放位置的、不同类型的三角形以及不同边上的高,要求学生测量三角形的高和底的长度,使学生在操作中进一步体会高的概念,认识只要是从一个顶点到对边的垂直线段就是三角形的高,感受底和高的相应关系,进一步理解三角形底和高的意义。这样让学生准确地理解概念的内涵,全面地把握概念的外延,深刻地体会高与底之间的对应联系。第四步通过“想想做做”P25第1题的画高练习,进一步感受描述式定义,巩固对高的理解。其中最右边的是直角三角形,它的两条直角边互为高和底,学生在画高的时候能够体会到这一点。另外让学生阅读资料了解三角形的稳定性三角形的稳定性是其重要特性,教材安排了“你知道吗”,让学生通过阅读并做实验体会这一特性。这里注意一点本册教材知识要求学生画请指定底边的高,这些高都是在三角形里面的,三角形外的高不做要求。还有就是在作图的时候一定要注意一些作图规范。

  (2)联系对直角、锐角、钝角的认识,引导学生探索三角形的分类。三角形的分类教学,必须使学生在充分的感知中体会三个内角大小有几种情况,理解三角形分类的方法及分类的合理性。第26页例题让学生在给角分类的活动中体会三角形的分类。首先呈现了6个不同形状的三角形,要求学生仔细观察各个三角形的每个角是什么角,并把观察结果填在预设的表格里。然后引导学生分析研究表格里的数据信息,发现有些三角形的三个角都是锐角,有些三角形里有一个直角和两个锐角,有些三角形里有一个钝角和两个锐角,从而引发可以给三角形按角分类,获得直角三角形、锐角三角形和钝角三角形的认识,掌握不同三角形的特点。准确而精炼的语言总结了什么样的三角形是锐角三角形、直角三角形和钝角三角形。最后还用集合图表达三角形的分类以及各类三角形与三角形整体的关系。

  教学三角形的分类要特别注意三点:第一,必须组织学生积极参与分类活动,在独立思考的基础上合作交流,逐渐形成共识。第二,要扣紧概念的关键,让学生理解为什么锐角三角形强调三个角都是锐角,直角三角形和钝角三角形只讲一个直角或一个钝角,从而掌握判断时的思考要点。如第33页第2题里左边和中间的三角形能确定它们分别是钝角三角形和直角三角形,因为在图中分别看到了1个钝角和1个直角。右边的三角形只看到1个锐角,不能确定它是什么三角形。第三,要用好第27页“想想做做”第3~7题,让学生在图形的变换中加强对各类三角形的认识。认识了三角形的分类,还要通过具体的观察、判断和操作、画图等活动进一步巩固对不同三角形的认识。教材在这方面有比较多的安排。例如P27的“想想做做”第3~7题,分别让学生判断各是什么三角形,巩固对各类三角形的认识;围出、折出、剪出和画出指定的三角形,使各类三角形的表象再现。特别是第7题是一道开放题,可以让学生通过画一画、说一说,互相交流,加深对各类三角形的认识,掌握各类三角形的`特征。

  3、从特殊到一般,通过实验得出三角形的内角和是180°。

  让学生“了解三角形的内角和是180°”是《标准》规定的教学内容和教学要求,这里讲的“了解”不是接受和知道,而是发现并简单应用。教材安排三角形内角和的学习,主要让学生由特殊到一般,通过自己的探索活动认识与掌握三角形内角和是180°。

  (1)第28页教学三角形的内角和,采用了“质疑——解疑”的教学策略,实验是策略的核心,是解疑的手段。

  首先计算同一块三角尺上的3个角的度数和。由于学生在四年级(上册)教材里已经知道了两块三角尺上的每一个角的度数,所以能够很快求得每块三角尺的3个角的和都是180°。并由此产生疑问:其他三角形的内角和也是180°吗?由此产生学习的愿望。接着安排学生通过实验解疑,用实验的方法验证、确认三角形内角和的结论。把一个三角形的3个角拼在一起,从拼成的是平角得出3个角的度数和是180°。教材要求小组合作,剪出不同类型的三角形进行实验,通过实验获得直接认识,验证自己的猜想,从而确认三角形的三个内角的和是180°,得出结论。因此,实验的对象有较大的包容性,实验的结论有很强的可靠性。学生会完全信服三角形的内角和是180°这一普遍规律。最后并通过“试一试”,应用三角形内角和求未知角的度数,巩固三角形内角和的结论。

  (2)为了让学生深刻地理解三角形内角和的规律。在认识三角形内角和以后,教材通过应用促进学生掌握这一内容,并应用解决问题。如P29.“想想做做”1~3题,应用三角形内角和求未知角的度数,在三角形的变换中判断内角和各是多少,巩固所获得的结论;。“想想做做”巧妙地设计了两道辨析题一道是第2题:一块三角尺的内角和180°,两块同样的三角尺拼成的一个大三角形的内角和又是多少呢?另一道是第3题:正方形内角和360°,对折出的三角形内角和180°,再对折成的小三角形内角和又是多少呢?解答这两道题时,学生的思考会在180°和360°以及180°和90°不同答案上碰撞,碰撞的结果是进一步认识三角形的内角和是一个普遍规律,不因三角形的大小而改变,不因拼、折等图形变换而改变。另外,教材还从两个方面引导学生应用三角形的内角和:一是根据三角形中已知的两个角的度数,求另一个角的度数;二是解释为什么直角三角形里只有1个直角,钝角三角形里只有1个钝角。第6题,通过思考一个三角形中最多有几个钝角或直角,并应用三角形内角和的知识合理解释,加深认识三角形内角和及钝角三角形、直角三角形的特征。

  4、注意三角形知识的内在联系

  三角形的分类是按角的大小为标准的,而等腰三角形和等边三角形是以边的长度特点来定义的。不同特征的三角形中又存在内在联系,认识三角形应该让学生了解这些联系。在P31~32第2~4题里,就让学生了解等腰三角形可以同时是直角三角形、锐角三角形或钝角三角形,体会等腰三角形都是轴对称图形。P33第2题通过判断,进一步认识钝角三角形、直角三角形分别只有一个钝角或直角,而每类三角形都有锐角,即只看一个锐角无法判断是什么三角形。第3题使学生体会两个一样的直角三角形,可以拼成三角形,也可以拼成四边形,而且可以有不同的拼法。第5题需要综合本单元学习的三角形知识,依据三角形边长之间的关系,选择小棒按要求摆出等腰三角形和等边三角形。第6题,要应用对等边三角形特征的认识进行解释,第7题,让学生观察三角形判断各是什么三角形,感受可以从不同角度判定一个三角形是什么三角形,体会知识之间的内在联系。

  5.注意培养学生的空间观念

  观察、举例、做图形感受三角形

  在P22例题里,引导学生先观察情景中的三角形,举出日常生活里接触过的三角形,加强三角形的表象,同时还要求学生做一个三角形,P23第1题也要求学生画三角形,把表象转化成具体的三角形再现出来,形成三角形的空间形象。

  学生在看、围、折、剪等活动中获得各类三角形特征的直接体验

  在空间与图形的学习中,引导学生实际操作,具体感受所学图形,积累对其形状、大小、位置关系的的感性认识,可以发展空间观念。教材在P27第2题通过观察、判断加强不同三角形形状的直接感受,第3~6题让学生围、折、剪图形,依据头脑里的表象再现出相应的图形,可以培养空间观念。第7题,需要依据三角形的特点进行分析、判断,知道可以分成两个怎样的三角形,才能有不同的分法。这些都有利于空间观念的发展。

  让学生折一折、剪一剪、画一画掌握等腰三角形和等边三角形的直观形象

  同样地,在认识等腰三角形和等边三角形时,也注重学生的动手实践,促进空间观念的发展。如P30、P31例中折一折、剪一剪,得出相应的图形,进一步体验各自的特点;P31“想想做做”第2~4题,也是动手剪一剪、画一画图形,并运用对图形特点的认识辨析相关图形,也是加强空间观念的手段与方法。

等腰三角形课件(篇9)

  《等腰三角形》是山东教育出版社义务教育课程实验教科书八年级数学上册第一章。等腰三角形是在学生学习了三角形的有关知识、掌握了全等三角形的判定及性质与轴对称的性质的基础上进行的。它不仅是对前面所学知识的综合应用,也是后面研究等边三角形等内容的预备知识,同时也是今后证明角相等、线段相等及两直线垂直的重用依据。

  学生在前面已接触过轴对称和全等三角形的有关知识,所以等腰三角形的这两个性质学生可以通过折叠发现,并用全等三角形的性质加以证明而通过探究等腰三角形的“三线合一”的性质,可以激发学生浓厚的学习数学的兴趣,使学生体会性质定理的来龙去脉;了解、感知知识发生、发展的全过程;拓宽学生探索图形变化的视野。掌握等腰三角形及其性质在生活中的应用,更有益于学生了解数学价值,体会数学来源于生活,并应用于生活。

  本节课主要通过小组合作、交流解决疑难问题,并在教师设疑与学生设疑、教师引导与学生讲解、教师评价与学生评价相结合中实施差异合作教学。

  新课程中等腰三角形的性质不是通过论证得出的,而是让学生动手操作,通过等腰三角形的轴对称变换得出的。在上“轴对称的认识”一节时,我引导学生采用折纸的方法,较为成功地得出了线段的中垂线、角平分线的性质。我考虑本节内容也能否让学生通过折纸的方法,实验、探索、归纳得出相关的结论呢?于是我进行了大胆地尝试。

  学优生通过启发引导探究出几何推理的方法得到等腰三角形的性质;中等生、学困生通过动手操作验证等腰三角形的性质。在复杂图形中正确运用“三线合一”的方法应予以指导,安排分层次的习题,以适应不同学生的需要。

  发展学生的思考能力、语言表达能力和推理问题的能力,深化逆向思维能力和综合应用问题能力。

  培养学生自信心、合作能力、竞争意识以及勇于探索的精神。

  学生活动:学生欣赏图片,感受生活中等腰三角形的数学美.

  【目的】:通过图片的展示,让学生感受到生活中处处都有等腰三角形,体会数学来源于生活,激发学生探究的积极性,并由此引入课题。

  师:什么叫等腰三角形?知道等腰三角形你能得到什么结论?

  生:两条边相等的三角形是等腰三角形。等腰三角形的两个底角相等。

  师:等腰三角形还有别的特点吗?请同学们通过动手折叠等腰三角形(纸片)进行探究。

  学生动手操作,同桌交流实验结果。

  师:说说你的发现。并向大家展示一下,你是怎样发现这个结论的?

  【自评】:此时学优生和中等生能够发现结论,而学困生能折出来,但不能用语言阐述,所以老师只能让学优生和中等生回答。通过动手,加深学生对知识形成过程的理解,发展学生的思维能力、动手操作能力和数学语言表达能力。让不同层次的学生进行回答,激发学生的求知欲,培养学生的探索意识和创新精神。

  师:是不是想告诉我们等腰三角形顶角的平分线也是底边上的中线和高线?

  生:等腰三角形底边上的中线也是顶角的平分线和底边上的高线.

  生:等腰三角形底边上的高线也是顶角的平分线和底边上的中线.

  师:那就是说等腰三角形的“三线合一”实际上有几层意义?

  师板书性质定理的内容。

  师:你能用几何推理的方法证得等腰三角形“三线合一”这一性质定理吗?(师把图和已知、求证写在黑板上)

  【自评】:加强知识形成过程的教学,不断完善知识体系,教给学生分析问题的方法。让学优生通过启发引导探究出几何推理的方法得到“三线合一”,中等生、学困生通过动手操作验证“三线合一”即可。

  师:在等腰三角形中,如果出现这“三线”中的“一线”时,同学们会联想到什么?

  自评:优等生能够表述几何语言,中等生和学困生就有困难,他们只能是从动手操作的过程中形象地认知,并不能上升到理论的高度来总结。

  师:非常好。等腰三角形“三线合一”是说明两个角相等、两条线段相等或垂直的重要依据。以后我们就可以用“三线合一”的三段推理去证明或解决其它的问题。

  自评:对于定理的学习,学生要从理解到会应用是有一个过程的,等腰三角形的“三线合一”这一定理的学习难点就是怎样去应用。我把教材这样处理,不但要使全体学生透彻的理解了这一定理,更让学优生知道这一定理的几何推理过程,为这一定理的应用打下了基础。设计好了这一思路后,我采用互动式教学法,通过师生对话和学生的操作和思考,使学生掌握等腰三角形的“三线合一”性质,从而发展其空间观念,并为定理的应用打下了坚实的基础。

  尝试练习一:

  【意图】:通过本练习,巩固理角等腰三角形“等边对等角”的性质和等边三角形的性质;特别通过练习(4)设计,得出不同的结果,培养学生思维的开放性与灵活性。

  尝试练习二:

  如图,房梁上放一把三角尺(等腰直角三角形),从顶点A挂一条铅垂线,使线经过三角尺斜边的中点O。这根房梁是否保持水平呢?为什么?

  【意图】:此例与引入课题时提出的问题模型呼应,体现了数学来源于实践,反过来又作用于实践的辩证唯物主义的观点。培养学生学数学,用数学的意识。

  (2)掌握方法:等腰三角形的性质提供了说明两角相等的常用方法;“三线合一”是说明两条线段相等、两个相等及两条直线互相垂直的依据。

  【设计体会】:

  在数学活动中如何真正让每一位学生积极行动起来,能提出自己的方法和建议,成为数学活动中的一分子,培养学生相对独立地获取知识和能力,逐步学会运用分析、类比、转化等方法。本课例中围绕一个“折”字较为成功地体现了这一点。

  在新授课的差异教学中,我认为最重要的是课堂环节的安排和问题的设置。有效的课堂提问必须清楚、明确、具有启发性,要考虑到不同层次的学生的心理特点、认知特点,适应学生的认识水平。通过分层测试使学生掌握等腰三角形的性质,并能初步运用。满足不同学生的需求,促进全体学生健康发展。帮助学生反思学习过程,使学生树立成功者的自信。

  [等腰三角形的教学设计]

  想了解更多实用资料网的资讯,请访问: 实用资料

本文来源:https://www.liuxue86.com/a/5085456.html
延伸阅读
以下是由我们收集整理的《地铁总监年度述职报告》,仅供参考,欢迎阅读。时光如电一般的飞驰,新的工作即将来临,是时候开始准备这一年的年终述职报告了。写年度述职报告,是对一年来工作做出的
2023-08-14
一年之计在于春,一日之计在于晨,新的一天从早晨开始。经过精心整理小编整合了关于早安心语短句子感悟的全部资讯,觉得自己是否能够自如地运用不同的语言表达方式?平常实行的日常生活和工作中
2023-08-14
一个人在黑夜里独自徘徊,独自追忆想过放弃,但放不开心中的那颗阴影。句子可以传达作者的思想情感,经常会把好的句子分享给朋友。以下句子主题是“发心情不好的句子说说”,是出国留学网编辑为
2023-08-14
“愿你能用心聆听春雨的声音,找到生命中的动力和支持,不断追求自己的梦想和目标。”经过全面考虑我为你推荐了这个关于谷雨祝福语。在我们的国家有种习俗叫做二十四节气,祝福节气当天你工作顺
2023-08-14
代考试检讨书篇1尊敬的老师:您好!真的很抱歉,我在x月x日的这次考试的中,做出了严重的作弊行为!这不仅给我的这门科目的成绩带来了惩罚,也给周围的同学,以及老师您带来了很大的麻烦!对
2023-08-14
等腰三角形是数学几何中一个重要的图形,在考试中也经常出现相关考点。下面是由出国留学网编辑为大家整理的“等腰三角形三线合一的用法有哪些”,仅供参考,欢迎大家阅读本文。等腰三角形三线合
2021-11-24
春晖四方,桃李天下,教案要根据教学原则和教材特点,结合学生具体情况进行编写。教案可以帮助教师科学、合理地支配课堂时间。想知道怎么提升自己编写教案的能力吗?以下由出国留学网的编辑收集
2022-12-28
每一位教师都需要使用教案课件,因为它是教学过程中不可或缺的一部分。相信大家都对写教案课件并不陌生。好的教学课件可以帮助教师更好地展示知识点和概念,但在写教案课件之前,大家应该考虑哪
2023-05-27
三角形全等课件【篇1】教学目标一、教学知识点1、三角形全等的“边边边”的条件。2、了解三角形的稳定性。二、能力训练要求1、经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结
2023-06-22
本文向大家推荐一篇优秀的“三角形课件”文章。教案和课件是老师工作中不可或缺的一部分,因此需要每位老师针对自己的教学课件进行精心的编写。教案是完成教学任务必不可少的途径。如果您对本文
2023-06-05