出国留学网

目录

霍尔效应实验报告8篇

字典 |

2023-08-26 15:42

|

【 liuxue86.com - 实用资料 】

  俗话说,只有通过实践而发现真理,随着经济的发展,往往都需要撰写报告。可行性报告从哪些方面写?我们为您准备的“霍尔效应实验报告”是一份特别精心打造的惊喜,请将此页面收藏起来以备不时之需!

霍尔效应实验报告 篇1

  反常霍尔效应虽然已被发现一百余年,但对其产生机理现在仍存在不同的.观点.本文介绍了一种可连续控温的霍尔效应测量系统.该系统的电路采用相干双交流电桥;在LabVIEW软件平台下,以LabVIEW和C混合编程完成整个系统的控制,该系统可实现从液氦温度到室温的精确控温、仪器的远程控制和数据的采集处理,用于镍薄膜的霍尔测量,效果良好.

作 者:樊英民 宋小会 张殿琳 FAN Ying-min SONG Xiao-hui ZHANG Dian-lin  作者单位:樊英民,FAN Ying-min(西北大学现代物理研究所,西安,710069)

  宋小会,张殿琳,SONG Xiao-hui,ZHANG Dian-lin(中国科学院物理研究所,北京,100080)

刊 名:低温物理学报  ISTIC PKU英文刊名:CHINESE JOURNAL OF LOW TEMPERATURE PHYSICS 年,卷(期): 30(3) 分类号:O51 关键词:反常霍尔效应   PID控温   LabVIEW  

霍尔效应实验报告 篇2

  1.在掌握液晶光开关的基本工作原理的基础上,测量液晶光开关的电光特性曲线,并由电光特性曲线得到液晶的阈值电压和关断电压。

  2.测量驱动电压周期变化时,液晶光开关的时间响应曲线,并由时间响应曲线得到液晶的上升时间和下降时间。

  3.测量由液晶光开关矩阵所构成的液晶显示器的视角特性以及在不同视角下的对比度,了解液晶光开关的工作条件。

  4.了解液晶光开关构成图像矩阵的方法,学习和掌握这种矩阵所组成的液晶显示器构成文字和图形的显示模式,从而了解一般液晶显示器件的工作原理。

  液晶的种类很多,仅以常用的TN(扭曲向列)型液晶为例,说明其工作原理。 TN型光开关的结构:在两块玻璃板之间夹有正性向列相液晶,液晶分子的形状如同火柴一样,为棍状。棍的长度在十几埃(1埃=10-10米),直径为4~6埃,液晶层厚度一般为5-8微米。玻璃板的内表面涂有透明电极,电极的表面预先作了定向处理(可用软绒布朝一个方向摩擦,也可在电极表面涂取向剂),这样,液晶分子在透明电极表面就会躺倒在摩擦所形成的微沟槽里;电极表面的液晶分子按一定方向排列,且上下电极上的定向方向相互垂直。上下电极之间的那些液晶分子因范德瓦尔斯力的作用,趋向于平行排列。然而由于上下电极上液晶的定向方向相互垂直,所以从俯视方向看,液晶分子的排列从上电极的沿-45度方向排列逐步地、均匀地扭曲到下电极的沿+45度方向排列,整个扭曲了90度。 理论和实验都证明,上述均匀扭曲排列起来的结构具有光波导的性质,即偏振光从上电极表面透过扭曲排列起来的液晶传播到下电极表面时,偏振方向会旋转90度。 取两张偏振片贴在玻璃的两面,P1的透光轴与上电极的定向方向相同,P2的透光轴与下电极的定向方向相同,于是P1和P2的透光轴相互正交。

  在未加驱动电压的情况下,来自光源的自然光经过偏振片P1后只剩下平行于透光轴的线偏振光,该线偏振光到达输出面时,其偏振面旋转了90°。这时光的偏振面与P2的透光轴平行,因而有光通过。

  在施加足够电压情况下(一般为1~2伏),在静电场的作用下,除了基片附近的液晶分子被基片“锚定”以外,其他液晶分子趋于平行于电场方向排列。于是原来的扭曲结构被破坏,成了均匀结构。从P1透射出来的偏振光的偏振方向在液晶中传播时不再旋转,保持原来的偏振方向到达下电极。这时光的偏振方向与P2正交,因而光被关断。

  由于上述光开关在没有电场的情况下让光透过,加上电场的时候光被关断,因此叫做常通型光开关,又叫做常白模式。若P1和P2的透光轴相互平行,则构成常黑模式。

  液晶可分为热致液晶与溶致液晶。热致液晶在一定的温度范围内呈现液晶的光学各向异性,溶致液晶是溶质溶于溶剂中形成的液晶。目前用于显示器件的都是热致液晶,它的特性随温度的改变而有一定变化。

  对于常白模式的液晶,其透射率随外加电压的升高而逐渐降低,在一定电压下达到最低点,此后略有变化。可以根据此电光特性曲线图得出液晶的阈值电压和关断电压。

  加上(或去掉)驱动电压能使液晶的开关状态发生改变,是因为液晶的分子排序发生了改变,这种重新排序需要一定时间,反映在时间响应曲线上,用上升时间τr和下降时间τd描述。给液晶开关加上一个周期性变化的电压,就可以得到液晶的时间响应曲线,上升时间和下降时间。

  上升时间:透过率由10%升到90%所需时间;下降时间:透过率由90%降到10%所需时间。液晶的响应时间越短,显示动态图像的效果越好,这是液晶显示器的重要指标。早期的液晶显示器在这方面逊色于其它显示器,现在通过结构方面的技术改进,已达到很好的效果。

  液晶光开关的视角特性表示对比度与视角的关系。对比度定义为光开关打开和关断时透射光强度之比,对比度大于5时,可以获得满意的图像,对比度小于2,图像就模糊不清了。

  除了液晶显示器以外,其他显示器靠自身发光来实现信息显示功能。这些显示器主要有以下一些:阴极射线管显示(CRT),等离子体显示(PDP),电致发光显示(ELD),发光二极管(LED)显示,有机发光二极管(OLED)显示,真空荧光管显示(VFD),场发射显示(FED)。这些显示器因为要发光,所以要消耗大量的能量。

  液晶显示器通过对外界光线的开关控制来完成信息显示任务,为非主动发光型显示,其最大的优点在于能耗极低。正因为如此,液晶显示器在便携式装置的显示方面,例如电子表、万用表、手机、传呼机等具有不可代替地位。下面我们来看看如何利用液晶光开关来实现图形和图像显示任务。

霍尔效应实验报告 篇3

   一、实验名称: 霍尔效应原理及其应用

   二、实验目的:

  1、了解霍尔效应产生原理;

  2、测量霍尔元件的 、 曲线,了解霍尔电压 与霍尔元件工作电流 、直螺线管的励磁电流 间的关系;

  3、学习用霍尔元件测量磁感应强度的原理和方法,测量长直螺旋管轴向磁感应强度 及分布;

  4、学习用对称交换测量法(异号法)消除负效应产生的系统误差。

   三、仪器用具:YX-04型霍尔效应实验仪(仪器资产编号)

   四、实验原理:

  1、霍尔效应现象及物理解释

  霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力 作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直于电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。对于图1所示。

  半导体样品,若在x方向通以电流 ,在z方向加磁场 ,则在y方向即样品A、A′电极两侧就开始聚积异号电荷而产生相应的电场 ,电场的指向取决于样品的导电类型。显然,当载流子所受的横向电场力 时电荷不断聚积,电场不断加强,直到 样品两侧电荷的积累就达到平衡,即样品A、A′间形成了稳定的电势差(霍尔电压) 。

  设 为霍尔电场, 是载流子在电流方向上的平均漂移速度;样品的宽度为 ,厚度为 ,载流子浓度为 ,则有:

  (1-1)

  因为 , ,又根据 ,则

  (1-2)

  其中 称为霍尔系数,是反映材料霍尔效应强弱的重要参数。只要测出 、 以及知道 和 ,可按下式计算 :

  (1-3)

  (1-4)

  为霍尔元件灵敏度。根据RH可进一步确定以下参数。

  (1)由 的符号(霍尔电压的正负)判断样品的导电类型。判别的方法是按图1所示的 和 的方向(即测量中的+ ,+ ),若测得的

  (2)由 求载流子浓度 ,即 。应该指出,这个关系式是假定所有载流子都具有相同的漂移速度得到的。严格一点,考虑载流子的`速度统计分布,需引入 的修正因子(可参阅黄昆、谢希德著《半导体物理学》)。

  (3)结合电导率的测量,求载流子的迁移率 。电导率 与载流子浓度 以及迁移率 之间有如下关系:

  (1-5)

  2、霍尔效应中的副效应及其消除方法

  上述推导是从理想情况出发的,实际情况要复杂得多。产生上述霍尔效应的同时还伴随产生四种副效应,使 的测量产生系统误差,如图2所示。

  (1)厄廷好森效应引起的电势差 。由于电子实际上并非以同一速度v沿y轴负向运动,速度大的电子回转半径大,能较快地到达接点3的侧面,从而导致3侧面较4侧面集中较多能量高的电子,结果3、4侧面出现温差,产生温差电动势 。可以证明 。 的正负与 和 的方向有关。

  (2)能斯特效应引起的电势差 。焊点1、2间接触电阻可能不同,通电发热程度不同,故1、2两点间温度可能不同,于是引起热扩散电流。与霍尔效应类似,该热扩散电流也会在3、4点间形成电势差 。若只考虑接触电阻的差异,则 的方向仅与磁场 的方向有关。

  (3)里纪-勒杜克效应产生的电势差 。上述热扩散电流的载流子由于速度不同,根据厄廷好森效应同样的理由,又会在3、4点间形成温差电动势 。 的正负仅与 的方向有关,而与 的方向无关。

  (4)不等电势效应引起的电势差 。由于制造上的困难及材料的不均匀性,3、4两点实际上不可能在同一等势面上,只要有电流沿x方向流过,即使没有磁场 ,3、4两点间也会出现电势差 。 的正负只与电流 的方向有关,而与 的方向无关。

  综上所述,在确定的磁场 和电流 下,实际测出的电压是霍尔效应电压与副效应产生的附加电压的代数和。可以通过对称测量方法,即改变 和磁场 的方向加以消除和减小副效应的影响。在规定了电流 和磁场 正、反方向后,可以测量出由下列四组不同方向的 和 组合的电压。即:

  , :

  , :

  , :

  , :

  然后求 , , , 的代数平均值得:

  通过上述测量方法,虽然不能消除所有的副效应,但 较小,引入的误差不大,可以忽略不计,因此霍尔效应电压 可近似为

  (1-6)

  3、直螺线管中的磁场分布

  1、以上分析可知,将通电的霍尔元件放置在磁场中,已知霍尔元件灵敏度 ,测量出 和 ,就可以计算出所处磁场的磁感应强度 。

  (1-7)

  2、直螺旋管离中点 处的轴向磁感应强度理论公式:

  (1-8)

  式中, 是磁介质的磁导率, 为螺旋管的匝数, 为通过螺旋管的电流, 为螺旋管的长度, 是螺旋管的内径, 为离螺旋管中点的距离。

  X=0时,螺旋管中点的磁感应强度

  (1-9)

霍尔效应实验报告 篇4

  1980年,德国科学家冯?克利青发现整数量子霍尔效应,1982年,美国科学家崔琦和施特默发现分数量子霍尔效应,这两项成果均获得诺贝尔物理学奖。

  量子霍尔效应是整个凝聚态物理领域中最重要、最基本的量子效应之一。它的应用前景非常广泛。我们使用计算机的时候,会遇到计算机发热、能量损耗、速度变慢等问题。这是因为常态下的芯片中,电子运动没有特定的轨道,会相互碰撞从而发生能量损耗。而量子霍尔效应则可以为电子的运动制定一定的规则,让它们在各自的跑道上“一往无前”地前进。好比一辆高级跑车,常态下是在拥挤的农贸市场上前进,而在量子霍尔效应下,则可以在高速路上前进。

  然而,量子霍尔效应的产生需要非常强的磁场。为了一台计算机的量子霍尔效应,相当于需外加10个计算机大的磁铁,不但体积庞大,而且价格昂贵,不适合个人电脑和便携式计算机。

  1988年,美国物理学家霍尔丹提出可能存在不需要外磁场的量子霍尔效应,即“量子反常霍尔效应”。它与已知的量子霍尔效应具有完全不同的物理本质,是一种全新的量子效应;但它的实现也更加困难,需要精准的材料设计、制备与调控。多年来,人们一直未能找到能实现这一特殊量子效应的材料体系和具体物理途径。自1988年开始,就不断有理论物理学家提出各种方案,然而在实验上没有取得任何进展。

  ,美国斯坦福大学张首晟教授领导的理论组成功地预言了二维拓扑绝缘体中的量子自旋霍尔效应,并于指出了在磁性掺杂的拓扑绝缘体中实现量子反常霍尔效应的新方向。,我国理论物理学家方忠、戴希等与张首晟教授合作,提出磁性掺杂的三维拓扑绝缘体有可能是实现量子化反常霍尔效应的最佳体系。这个方案引起了国际学术界的广泛关注。德国、美国、日本等国有多个世界一流的研究团队沿着这个思路在实验上寻找量子反常霍尔效应,但一直没有取得突破。

  由清华大学薛其坤院士领衔,清华大学、中科院物理所和斯坦福大学研究人员联合组成的团队,经过近4年的研究,生长测量了1000多个样品。最终,他们利用分子束外延方法,生长出了高质量的Cr掺杂(Bi,Sb) 2Te3拓扑绝缘体磁性薄膜,并在极低温输运测量装置上成功观测到了量子反常霍尔效应。这项研究成果将推动新一代低能耗晶体管和电子学器件的发展,可能加速推进信息技术革命进程。

  3月14日,该成果发表于美国《科学》杂志。《科学》杂志的评审作出评价:“这篇文章结束了对量子反常霍尔效应多年的探寻,这是一项里程碑式的工作。”诺贝尔物理奖得主、清华大学高等研究院名誉院长杨振宁教授说,这是“诺贝尔奖级的发现”。

  5.关于“量子霍尔效应”与“量子反常霍尔效应”的区别,以下表述小正确的一项是:

  A.前者是整个凝聚态物理领域中最重要、最基本的量子效应之一;后者具有与前者完全不同的物理本质,是一种全新的量子效应。

  B.前者应用前景广泛;后者则属于特殊情况下的量子效应,应用前景限于低能耗晶体管和电子学器件方面。

  C.前者的产牛需要非常强的磁场,应用时难免器件体积过大、成本过高;后者的产生不需要外磁场,应用时,能使得器件的体积小不至于过大。

  D.前者于1980年被发现,后者于20被证实;后者的实现比前者的实现更难能可贵,需要精准的材料设计、制备与调控。

  A.量子霍尔效应可以使电子的运动由无序变成有序,使得电子在各自特定的轨道上运动,在很大程度上.避免电子相互碰撞,避免其能量的无谓损耗。

  B.要在试验层面证实量子反常霍尔效应,对科学家而育足十分严峻的挑战,既需要有很特殊的材料体系,也需要有很特殊的物理途径。

  C.薛其坤领衔的团队利用分子束外延方法,生长出了高质量的Cr掺杂(Bi,Sb) 2Te3拓扑绝缘体磁性薄膜,在这一材料中,就存在着量子反常霍尔效应。

  D.曾有科学家提出,磁性掺杂的三维拓扑绝缘体有可能是实现量子反常霍尔效应的最佳体系,但经德、美、日等多国科学家的实践证明,这条思路行不通。

  7.根据原文内容,下列推断正确的一项是:

  A.常态下的芯片中,电子运动没有特定轨道,会相互碰撞,因而计算机会出现发热、能量损耗、速度变慢等问题。量子霍尔效应的具体应用,才能解决这些问题。                 (不是唯一条件)

  B.由于量子霍尔效应的产生需要非常强的磁场,所以到目前为止,它并未获得实际应用;也正是因为这个原因,对量子反常霍尔效应的'研究才显得十分必要。                   (因果推断不成立)

  C.薛其坤领衔的研究团队之所以能率先证实量子反常霍尔效应,是因为他们不仅吸纳了其他科学家的研究成果,掌握了正确的研究途径,而且在方法上有自己的创新。

  D.鉴于发现整数量子霍尔效应的德国科学家和发现分数量了霍尔效应的芙国科学家均获得诺贝尔物理学奖,我们可以断言薛其坤院士领衔的团队将获得诺贝尔物理学奖。                    (绝对化)

  试题答案:

  5.答案:5.B(从原文所阐述的科学原理看,“量子反常霍尔效应”与“量子霍尔效应” 的应用前景没有什么区别,都能促进低能耗晶体管和电子学器件的发展,都能解决计算机能量损耗、发热、速度变慢等问题。)

  6.答案:6.D(“这条思路行不通”误解文意。据原文意,方忠、戴希、张首晟等人提出的“磁性掺杂的三维拓扑绝缘体有可能是实现量子化反常霍尔效应的最佳体系”的设想,是后来薛其坤团队证实“量子反常霍尔效应”的指路明灯。虽先前德、美、日等国科学家在此思路上未取得突破,但不能据此认为“这条思路行不通”。)

  答案:7.C(A“量子霍尔效应的具体应用,才能解决(计算机发热、能量损耗、速度变慢等)这些问题”太绝对,据原文意,“量子反常霍尔效应”的具体应用,也能解决这些问题。B 前句“由于量子霍尔效应的产生需要非常强的磁场,所以……它并未获得实际应用”强加因果,也于文无据;后句说,因为量子霍尔效应未能获得实际应用,所以有必要研究量子反常霍尔效应,这也是强加因果,不合原文意思。从原文看,研究量子反常霍尔效应之所以必要,是因为量子霍尔效应的应用存在着器件体积过大、成本过高的问题。D“……断言薛其坤院士领衔的团队将获得诺贝尔物理学奖”太唐突。“断言”意谓“十分肯定地说”,依原文,薛其坤团队很有可能获得诺贝尔物理学奖,但并没有说十分肯定)

霍尔效应实验报告 篇5

  本文主要评述和介绍半导体微结构中自旋轨道耦合的研究和最近的研究进展.我们细致地讨论了半导体微结构中自旋轨道耦合的物理起源和窄带隙半导体量子阱中的自旋霍尔效应.我们发现目前国际上广泛采用的线性Rashba模型在较大的电子平面波矢处失效:即自旋轨道耦合导致的能带自旋劈裂不再随电子波矢的增加而增加,而是开始下降,即出现强烈的非线性行为.这种非线性的行为起源于导带和价带间耦合的减弱.这种非线性行为还会导致电子的D'yakonov-Perel'自旋弛豫速率在较高能量处下降,与线性模型的结果完全相反.在此基础上,我们构造统一描述电子和空穴自旋霍尔效应的.理论框架.我们的方法可以非微扰地计入自旋轨道耦合对本征自旋霍尔效应的影响.我们将此方法应用于强自旋轨道耦合的情形,即窄带隙CdHgTe/CdTe半导体量子阱.我们发现调节外电场或量子阱的阱宽可以作为导致量子相变和本征自旋霍尔效应的开关.我们的工作可能会为区别和实验验证本征自旋霍尔效应提供物理基础.

作 者:常凯 杨文 CHANG Kai YANG Wen  作者单位:中国科学院半导体所超晶格与微结构国家重点实验室,北京,100083 刊 名:物理学进展  ISTIC PKU英文刊名:PROGRESS IN PHYSICS 年,卷(期): 28(3) 分类号:O472+.4 O471.5 关键词:半导体   自旋轨道耦合   自旋弛豫   自旋霍尔效应  

霍尔效应实验报告 篇6

   实验内容:

  1. 保持 不变,使Im从0.50到4.50变化测量VH.

  可以通过改变IS和磁场B的方向消除负效应。在规定电流和磁场正反方向后,分别测量下列四组不同方向的IS和B组合的VH,即

  +B, +I

  VH=V1

  —B, +

  VH=-V2

  —B, —I

  VH=V3

  +B, -I

  VH=-V4

  VH = (|V1|+|V2|+|V3|+|V4|)/4

  0.50

  1.60

  1.00

  3.20

  1.50

  4.79

  2.00

  6.90

  2.50

  7.98

  3.00

  9.55

  3.50

  11.17

  4.00

  12.73

  4.50

  14.34

  画出线形拟合直线图:

  Parameter Value Error

  ------------------------------------------------------------

  A 0.11556 0.13364

  B 3.16533 0.0475

  ------------------------------------------------------------

  R SD N P

  ------------------------------------------------------------

  0.99921 0.18395 9

  2.保持IS=4.5mA ,测量Im—Vh关系

  VH = (|V1|+|V2|+|V3|+|V4|)/4

  0.050

  1.60

  0.100

  3.20

  0.150

  4.79

  0.200

  6.90

  0.250

  7.98

  0.300

  9.55

  0.350

  11.06

  0.400

  12.69

  0.450

  14.31

  Parameter Value Error

  ------------------------------------------------------------

  A 0.13389 0.13855

  B 31.5 0.49241

  ------------------------------------------------------------

  R SD N P

  ------------------------------------------------------------

  0.99915 0.19071 9

  基本满足线性要求。

  2. 判断类型

  经观察电流由A’向A流,B穿过向时电势上低下高所以载流子是正电荷空穴导电。

  4.计算RH,n,σ,μ

  线圈参数=5200GS/A;d=0.50mm;b=4.0mm;L=3.0mm

  取Im=0.450A;由线性拟合所得直线的斜率为3.165(Ω)。

  ;

  B=Im*5200GS/A=2340T;有 Ω。

  若取d的单位为cm;

  磁场单位GS;电位差单位V;电流单位A;电量单位C;代入数值,得RH =6762cm3/C。

  n=1/RHe=9.24E14/cm-3。

  =0.0473(S/m);

  =3.198(cm2/Vs)。

  思考题:

  1、若磁场不恰好与霍尔元件片底法线一致,对测量结果有何影响,如果用实验方法判断B与元件发现是否一致?

  答:若磁场方向与法线不一致,载流子不但在上下方向受力,前后也受力(为洛仑兹力的两个分量);而我们把洛仑兹力上下方向的分量当作合的洛仑兹力来算,导致测得的Vh比真实值小。从而,RH偏小,n偏大;σ偏大;μ不受影响。

  可测量前后两个面的电势差。若不为零,则磁场方向与法线不一致。

  2、能否用霍尔元件片测量交变磁场?

  答:不能,电荷交替在上下面积累,不会形成固定的电势差,所以不可能测量交变的磁场。

霍尔效应实验报告 篇7

  2、测量霍尔元件的 、曲线,了解霍尔电压 与霍尔元件工作电流 、直螺线管的励磁电流 间的关系;

  3、学习用霍尔元件测量磁感应强度的原理和方法,测量长直螺旋管轴向磁感应强度 及分布;

  4、学习用对称交换测量法(异号法)消除负效应产生的系统误差。

  霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力 作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直于电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。对于图1所示。

  半导体样品,若在x方向通以电流 ,在z方向加磁场 ,则在y方向即样品A、A′电极两侧就开始聚积异号电荷而产生相应的电场 ,电场的指向取决于样品的导电类型。显然,当载流子所受的横向电场力 时电荷不断聚积,电场不断加强,直到 样品两侧电荷的积累就达到平衡,即样品A、A′间形成了稳定的电势差(霍尔电压) 。

  设 为霍尔电场, 是载流子在电流方向上的平均漂移速度;样品的宽度为 ,厚度为 ,载流子浓度为 ,则有:

  其中 称为霍尔系数,是反映材料霍尔效应强弱的重要参数。只要测出 、以及知道 和 ,可按下式计算 :

  为霍尔元件灵敏度。根据RH可进一步确定以下参数。

  (1)由 的符号(霍尔电压的正负)判断样品的导电类型。判别的方法是按图1所示的 和 的方向(即测量中的+ ,+ ),若测得的

  (2)由 求载流子浓度 ,即 。应该指出,这个关系式是假定所有载流子都具有相同的漂移速度得到的。严格一点,考虑载流子的速度统计分布,需引入 的修正因子(可参阅黄昆、谢希德著《半导体物理学》)。

  (3)结合电导率的测量,求载流子的迁移率 。电导率 与载流子浓度 以及迁移率 之间有如下关系:

  上述推导是从理想情况出发的,实际情况要复杂得多。产生上述霍尔效应的同时还伴随产生四种副效应,使 的测量产生系统误差,如图2所示。

  (1)厄廷好森效应引起的电势差 。由于电子实际上并非以同一速度v沿y轴负向运动,速度大的电子回转半径大,能较快地到达接点3的侧面,从而导致3侧面较4侧面集中较多能量高的电子,结果3、4侧面出现温差,产生温差电动势 。可以证明 。 的正负与 和 的方向有关。

  (2)能斯特效应引起的电势差 。焊点1、2间接触电阻可能不同,通电发热程度不同,故1、2两点间温度可能不同,于是引起热扩散电流。与霍尔效应类似,该热扩散电流也会在3、4点间形成电势差 。若只考虑接触电阻的差异,则 的方向仅与磁场 的方向有关。

  (3)里纪-勒杜克效应产生的电势差 。上述热扩散电流的载流子由于速度不同,根据厄廷好森效应同样的理由,又会在3、4点间形成温差电动势 。 的正负仅与 的方向有关,而与 的方向无关。

  (4)不等电势效应引起的电势差 。由于制造上的困难及材料的不均匀性,3、4两点实际上不可能在同一等势面上,只要有电流沿x方向流过,即使没有磁场 ,3、4两点间也会出现电势差 。 的正负只与电流 的方向有关,而与 的方向无关。

  综上所述,在确定的磁场 和电流 下,实际测出的电压是霍尔效应电压与副效应产生的附加电压的代数和。可以通过对称测量方法,即改变 和磁场 的方向加以消除和减小副效应的影响。在规定了电流 和磁场 正、反方向后,可以测量出由下列四组不同方向的 和 组合的电压。即:

  然后求 , , , 的代数平均值得:

  通过上述测量方法,虽然不能消除所有的副效应,但 较小,引入的误差不大,可以忽略不计,因此霍尔效应电压 可近似为

  1、以上分析可知,将通电的霍尔元件放置在磁场中,已知霍尔元件灵敏度 ,测量出 和 ,就可以计算出所处磁场的磁感应强度 。

  2、直螺旋管离中点 处的轴向磁感应强度理论公式:

  式中, 是磁介质的磁导率, 为螺旋管的匝数, 为通过螺旋管的电流, 为螺旋管的长度, 是螺旋管的内径, 为离螺旋管中点的距离。

  1、将测试仪的“ 调节”和“ 调节”旋钮均置零位(即逆时针旋到底),极性开关选择置“0”。

  2、接通电源,电流表显示“0.000”。有时, 调节电位器或 调节电位器起点不为零,将出现电流表指示末位数不为零,亦属正常。电压表显示“0.0000”。

  3、测定 关系。取 =900mA,保持不变;霍尔元件置于螺旋管中点(二维移动尺水平方向14.00cm处与读数零点对齐)。顺时针转动“ 调节”旋钮, 依次取值为1.00,2.00,…,10.00mA,将 和 极性开关选择置“+” 和“-”改变 与 的极性,记录相应的电压表读数 值,填入数据记录表1。

  4、以 为横坐标, 为纵坐标作 图,并对 曲线作定性讨论。

  5、测定 关系。取 =10 mA ,保持不变;霍尔元件置于螺旋管中点(二维移动尺水平方向14.00cm处与读数零点对齐)。顺时针转动“ 调节”旋钮, 依次取值为0,100,200,…,900 mA,将 和 极性开关择置“+” 和“-”改变 与 的极性,记录相应的电压表读数 值,填入数据记录表2。

  6、以 为横坐标, 为纵坐标作 图,并对 曲线作定性讨论。

  1、取 =10 mA, =900mA。

  2、移动水平调节螺钉,使霍尔元件在直螺线管中的位置 (水平移动游标尺上读出),先从14.00cm开始,最后到0cm点。改变 和 极性,记录相应的电压表读数 值,填入数据记录表3,计算出直螺旋管轴向对应位置的磁感应强度 。

  3、以 为横坐标, 为纵坐标作 图,并对 曲线作定性讨论。

  4、用公式(1-8)计算长直螺旋管中心的磁感应强度的理论值,并与长直螺旋管中心磁感应强度的测量值 比较,用百分误差的形式表示测量结果。式中 ,其余参数详见仪器铭牌所示。

  六、注意事项:

  1、为了消除副效应的影响,实验中采用对称测量法,即改变 和 的方向。

  2、霍尔元件的工作电流引线与霍尔电压引线不能搞错;霍尔元件的工作电流和螺线管的励磁电流要分清,否则会烧坏霍尔元件。

  3、实验间隙要断开螺线管的励磁电流 与霍尔元件的工作电流 ,即 和 的极性开关置0位。

  4、霍耳元件及二维移动尺容易折断、变形,要注意保护,应注意避免挤压、碰撞等,不要用手触摸霍尔元件。

  七、数据记录:KH=23.09,N=3150匝,L=280mm,r=13mm

  10.00 2.99 -3.00 3.17 -3.19 3.09

  10.0 2.92 -2.96 3.13 -3.13 13.10

  12.0 2.94 -2.99 3.15 -3.06 13.20

  九、实验结果:

  实验表明:霍尔电压 与霍尔元件工作电流 、直螺线管的励磁电流 间成线性的关系。

  长直螺旋管轴向磁感应强度:

霍尔效应实验报告 篇8

  实验内容:

  1. 保持 不变,使Im从0.50到4.50变化测量VH.

  可以通过改变IS和磁场B的方向消除负效应。在规定电流和磁场正反方向后,分别测量下列四组不同方向的IS和B组合的VH,即

  画出线形拟合直线图:

  ------------------------------------------------------------

  ------------------------------------------------------------

  ------------------------------------------------------------

  ------------------------------------------------------------

  ------------------------------------------------------------

  ------------------------------------------------------------

  经观察电流由A’向A流,B穿过向时电势上低下高所以载流子是正电荷空穴导电。

  线圈参数=5200GS/A;d=0.50mm;b=4.0mm;L=3.0mm

  取Im=0.450A;由线性拟合所得直线的斜率为3.165(Ω)。

  ;

  B=Im*5200GS/A=2340T;有 Ω。

  若取d的单位为cm;

  磁场单位GS;电位差单位V;电流单位A;电量单位C;代入数值,得RH =6762cm3/C。

  n=1/RHe=9.24E14/cm-3。

  =0.0473(S/m);

  =3.198(cm2/Vs)。

  思考题:

  1、若磁场不恰好与霍尔元件片底法线一致,对测量结果有何影响,如果用实验方法判断B与元件发现是否一致?

  答:若磁场方向与法线不一致,载流子不但在上下方向受力,前后也受力(为洛仑兹力的两个分量);而我们把洛仑兹力上下方向的分量当作合的洛仑兹力来算,导致测得的Vh比真实值小。从而,RH偏小,n偏大;σ偏大;μ不受影响。

  可测量前后两个面的电势差。若不为零,则磁场方向与法线不一致。

  2、能否用霍尔元件片测量交变磁场?

  答:不能,电荷交替在上下面积累,不会形成固定的电势差,所以不可能测量交变的磁场。

  想了解更多实用资料网的资讯,请访问: 实用资料

本文来源:https://www.liuxue86.com/a/5114063.html
延伸阅读
心得体会就是用自己的话,把内心的感受浓缩成简短的文字,我们在写心得体会的时候需要注意什么问题呢?下面为大家精心整理的“教师帮扶教育心得”相关内容,如需更多技巧请继续关注我们的网站!
2023-08-29
为了分析和研究自己读过的文字,此时,我们的第一想法是先把它记录下来。心得体会是一种有效的自我反思和提高方法,出国留学网小编为您搜罗的“高中生军训感想300字”,下列信息仅供参考请大
2023-08-29
为了让我们更加坚定目标,励志的话语对我们来说,是必不可少的。只有不断地行动和学习才能取得成功并迎来更美好的未来。出国留学网编辑经过充分考虑整理了包括朋友圈励志的正能量短句在内的一系
2023-08-29
“天一冷就想等一场雪,很小的雪,可以落下彩虹;很大的雪,可以掩盖记忆。”经过收集,出国留学网编辑为您献上下雪发朋友圈的唯美心情说说。不同心情,给别人的感受也不一样,写一些句子体会我
2023-08-29
行是知之始,知是行之成,在日常的学习生活中。我们经常都会用到报告,报告可以反映工作中的基本情况、工作中取得的经验教训、存在的问题等,好的报告都有哪些内容构成?在这篇文章里我们将探讨
2023-08-29
众所周知,实践是检验真理的唯一标准,不管是上学还是工作的时候。都需要写报告,报告的内容要突出重点,做到“清、重、实”三点,报告的正确格式怎么写?栏目小编对“观察实验报告”问题进行了
2023-08-25
大家都说,实践后才会有收获,为了更加具体地去陈述一些数据。我们需要写一份报告,写报告大概是现职业人士最常见的一件事情。您是否了解“电路实验报告”让我们一起来了解,希望我的故事能够给
2023-08-15
您需要的相关信息小编已经为您整理好了:“精馏实验报告”,与朋友分享传递知识把这篇文章发送给您的朋友们吧。古语言,一分耕耘,一分收获,随着社会一步步向前发展。我们经常都会用到报告,报
2023-08-08
写报告可以及时总结工作中的问题,便于及时纠错,当我们完成一项任务时。往往都需要撰写报告,一篇优秀的报告怎么样动笔呢?从您的需求出发出国留学网小编为您定制了这份精选“实验实验报告”,
2023-05-07
不管我们是学习,还是工作中,我们时常会使用到报告,报告的写作是慎重而严肃的工作,一定要认真对待,所以也有很多注意事项。我们写报告时可以从哪些方面着手?以下是小编为您整理的《示波器实
2023-05-03