出国留学网

目录

[荐]面积公式推导教学设计6篇

【 liuxue86.com - 实用资料 】

  一个好老师就要负责任地上每一节课,无论教授哪一门课程,任何老师都不能忽略教案的编写。写好教案是上好课的基础,出于您的要求我为您搜集了以下信息:“面积公式推导教学设计”,我们会在网站上随时发布最新的相关信息请关注!

面积公式推导教学设计 篇1

  教学课题:

  《梯形面积公式》推导

  教学课时:1课时

  年级:五年级

  执教人:秦东 教学目标:

  1、知识与技能目标。

  ①、让学生联系生活认识梯形,并标出上下底和高。②、运用“旋转、平移、切割”方法推导梯形的面积公式。

  2、教学过程和方法。

  ①、教师讲一例后要求学生们自主探索出梯形的面积计算公式。②、组织学生们自己动手推导从而教师归纳总结梯形面积计算公式。

  3、情感态度和价值观。

  接合前面学过知识让学生们动手操作培养学生的动手实践能力,激发学习兴趣,培养合作意识,渗透转化的数学思想的方法。教学重难点:

  ①、引导学生运用“拼凑”的方法推导梯形面积计算公式。

  ②、引导学生运用“切割”的方法推导梯形面积计算公式。教学教具: ①、课件。

  ②、二个普通梯形。学生学具:

  ①、两个完全一样的梯形。②、一个普通梯形和一把剪刀。教学过程:

  (一)引入新课

  1、课件出示:生活中的图片,让学生找出学习过的图形目的在于创设情境。

  2、复习近平行四边形、三角形面积计算公式的推导步骤:

  3、教师提出问题:小车的车窗玻璃多大呢?用什么样的公式来计算呢?

  4、板书课题,并用课件出示本节课的教学目标。

  (二)教学实施

  1、教师引导学生认识一个普通梯形的上下底高和腰。

  2、课件出示:一个直角梯形和一等腰梯形。要求学生们标出其上下底和高。

  3、教师引导学生用“拼凑”法推导梯形的面积公式。

  新景乡回龙完小五年级(2)班 第1页

  4、课件出示:用两个完全一样的梯形可组成一个什么样的图形? 并演示其“拼凑”的过程——(平形四边形)要求学生写出此图形的面积计算公式。S=ɑ×h,同时用代换法写出梯形的面积计算公式,S=(上底+下底)×高÷2。

  5、课件出示:请学生们分组用自己的方法推导出直角梯形、等腰梯形的面积计算公式。教师叫其中一组的一位学生作为代表介绍自己所推导的过程,后教师归纳总结出梯形的面积计算公式。

  6、除了用拼凑的方法学生们还有其它方法吗?考虑用一个梯形可推导出梯形面积计算公式吗?

  7、课件出示:用一个普通的梯形来推导梯形的面积计算公式。“沿一腰中点和左上角顶点之间的连线剪开,将梯形分成一个四边形和一个三角形,以一腰中点为轴顺时针转动小三角形,切割旋转后组成一个什么样的图形?并用课件演示所切割的方法。(三用形)三角形的底是梯形的上底与下底的和,用三角形的面积公式代换出梯形的面积公式。S=(上底+下底)×高÷2。

  8、课件出示:要求学生们分组用一个直角梯形、一个等腰梯形推导出梯形面积计算公式。并叫其中一组介绍自己的切割的方法后教师总结归纳出梯形面积计算公式(教师行间巡视和学生一起探究,对学生在探究过程中出现的问题进行指导)。

  板书设计: 《梯形面积公式推导》

  1.拼凑法 2.切割法

  教学小结:

  通过刚才同学们一起研究,我们得出了梯形面积的计算公式。梯形的面积=(上底+下底)×高÷2。如用S表示梯形面积,ɑ表示梯形的上底,b表示梯形的下底,h表示梯形的高,用字母表示梯形的面积计算公式为:S=(ɑ+b)×h÷2。课后反思:

  新景乡回龙完小五年级(2)班 第2页

面积公式推导教学设计 篇2

  教具

  1、多媒体计算机及课件;

  2、每个学生3张平行四边形硬纸片及剪刀一把、尺子。

  教学过程

  一、质疑引新:

  1、(电脑出示长方形)这图形你认识吗?长方形面积公式是怎样的?[板书:长方形的面积=长宽]

  (出示平行四边形)这又是什么图形?指出平行四边形的底和高?

  2、谈话引入:你想知道你所做的平行四边形面积有多大吗?[板书课题:平行四边形的面积]----------请同学们打开课本69页。

  二、引导探求:

  ㈠、提出问题:

  1、用数方格法求平行四边形的面积

  ⑴、谈话:我们以前研究长方形面积计算的时候,用到了数方格的方法,今天为了研究平行四边形面积的计算,我们也可以用数方格的方法。请同学们看屏幕(微机显示教材P69图)。

  ⑵、数出方格图中平行四边形的面积。提问:

  A、师:每个方格代表多大的面积?(电脑闪烁小方格,并在学生齐答后显示1平方厘米图例)

  B、指名来数一数,这个长方形的面积是多少平方厘米?平行四边形的面积是多少平方厘米?

  ⑶、若以下面的这条边作为平行四边形的底(电脑显示),那么它的底和相应的高各是多少厘米?

  2、电脑显示教材P69图,数出图中长方形的长和宽各是多少厘米?并求出它的面积。

  1平方厘米

  3、比较两个图形的关系(电脑同时显示图)请大家仔细观察上面二个图形,比较平行四边形的底和长方形的长,平行四边形的高和长方形的宽,大家发现了什么?再请大家看看它们的面积呢?

  电脑逐步显示:平行四边形的面积=长方形的面积。

  平行四边形的底=长方形的长;

  平行四边形的高=长方形的宽;

  引导学生猜想平行四边形的面积与它的什么有关?到底对不对?我们用数方格的方法算出平等四边形的面积,你认为这种方法方便吗?还有更方便的方法吗?让我们一起开动脑筋,想办法来证明它吧!

  电脑展示:(1)底、高、不变,面积不变。

  (2)底、高改变,面积变化。

  你们的猜想正确,平行四边形的面积大小与它的底和高有关,如果给你一个平行四边形,你能想办法算出它的面积吗?

  ㈡、推导公式:

  1、小组合作研究:

  长方形的面积是长乘以宽,那么能不能想个办法将平行四边形转化成长方形,进而用公式来计算呢?下面我们来做个实验,四人小组合作请同学们拿出1个平行四边形纸片及剪刀,以学习小组合作为形式,一人动手,三人留意看,并请同学们在剪拼的过程中,思考以下二个问题:(显示)

  ⑴、怎样剪拼才能将平行四边形转化成长方形?

  ⑵、转化后的图形与原平行四边形有什么关系?

  (要求:比一比,看一看,哪一个小组最能干,拼得又对又快?)

  2、各小组实验操作,教师巡视指导。

  3、各小组交流实验情况:

  ⑴、谁愿意把你的转化方法说给大家听呢?请上台来交流!

  ⑵、有没有不同的剪拼方法?(继续请同学演示)。

  ⑶、电脑演示各种转化方法。

  4、小组合作讨论归纳总结规律:

  ⑴、平行四边形剪拼成长方形后,什么变了?什么没变?

  ⑵、剪拼成的长方形的长与宽分别与平行四边形的底和高有什么关系?

  ⑶、剪样成的图形面积怎样计算?

  ⑷、小组上台汇报,指着图形说一次得出:

  因为:长方形的面积=长宽

  所以:平行四边形的面积=底高(同位指着图形说)

  7、自学字母公式:记文字公式不方便,我们一起来学习用字母公式表示,如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么S=ah(板书)。同时强调:在含有字母的式子中,字母和字母之间的乘号可以记作.,也可以省略不写,所以平行四边形的面积公式还可以记作S=a.h或S=ah(板书)。

  ㈢、巩固公式:

  1、刚才我们已经推导出了平行四边形的面积公式,那么,要求平行四边形的面积,必须要知道哪些条件?(平行四边形的底和相对应的高)

  ㈣、应用解决:

  1、自学教材P70例题

  下面让我们用公式来解决一些实际问题。电脑显示:一块平行四边形菜地(如下图),它的底长32.6米,高8.4米,它的面积是多少?(得数保留整平方米)

  板书:32.68.4274(平方米)

  答:它的面积约是274平方米.

  (挑一学生的作业投影评讲)

  (五)质疑问难。(略)

  你对今天学习的知识有不懂的地方吗?

  三、巩固练习:

  1、口答教材P71练一练第1题。

  对应练习。

  (1)求下面的平行四边形面积。

  刚才我们已经推导出了平行四边形的面积公式,那么,要求平行四边形的面积,必须要知道哪些条件?(平行四边形的底和相对应的高)

  (2)对应练习:

  (3)生活中的数学:

  出示一些生活中看到的平行四边形建筑、工具、楼梯等图片,最后找一个平行四边形的停车位,让学生求面积。

  (4)、请同学们拿出刚才的平行四边形,测量你需要的数据并利用公式求出它的面积。(测量、计算、交流。)

  四、教师总结:

  1、①回顾目标1,你是怎样理解平行四边形面积公式的?

  ②运用公式计算平行四边形的面积时,必须知道什么条件?应注意什么问题?③对照学习目标,你掌握了没有?

  你还有不明白的问题吗?

  2、教师指出:计算平行四边形的面积有多种方法,其中数方格的方法使用起来比较麻烦,不实用。人们通常采用量出平行四边形的底与相应的高,运用底高这个公式来计算平行四边形的面积。。

  3、布置作业。

  设计意图

  由已知到未知,即由旧知识引入新知识,引导学生进行类推,掌握新概念。这是教学抽象的数学知识的一种重要途径。平行四边形面积的计算这一内容,与长方形面积的计算有着密切的联系,适合用这一途径进行

  多媒体显示步骤:

  (1)、出示方格,显示左下角的面积单位;

  (2)、学生汇报结果,屏幕分别显示相应的数量。教学。

  使学生容易理解当平行四边形的高不变,它的面积随着底边的缩小而缩小,说明平行四边形的面积与底有关;当平行四边形的底不变,它的面积随着高的缩小而缩小,也说明了平行四边形的面积与高有关。

  在这个环节中主要采用了动手操作、自主探索和合作交流的学习方式,通过动手操作、探索,充分发挥学生学习的主体,培养学生探索精神,使学生获得战胜困难,探索成功的体验,从而产生学习数学的兴趣,建立学习数学的信心。这样做完全把学生当作学习的主体,体现了活动化的数学学习过程,有效地提高了课堂教学效率与质量。

  ①先沿着平行四边形的高剪下左边的直角三角形.

  ②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动.

  ③移动一段后,左手改按梯形的左部,右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止.

  平行四边形与长方形的等积转化问题的理解,通过剪、移、拼找出平行四边形底和高与长方形长和宽的关系,及面积始终不变的特点,归纳出长方形等积转化成平行四边形。

  公式用字母表示。这一步骤需要使学生清楚每个字母的含义,并且知道s=ah也可以写s=ah

  首先让学生看着平行四边形的面积公式回答:若想求平行四边形的面积,应该知道哪些条件?然后让学生比较新课开始前平行四边形的面积与长方形面积的大小,解除悬念。再让学生独立思考书中的例题,在教师的扶持下,让学生在黑板前和黑板下齐做,教师巡视指导,共同订正。

  平行四边形的底和相对应的高

  布置作业

  练习十六的第2、3题.

  板书设计

  平行四边形的面积

  长方形的面积=长宽

  ‖‖‖

  平行四边形的面积=底高

  教学后记

  在本节课中,我力图体现出学生学习方法的转变:从被动接受学习变为在自主、探究、合作中学习。让学生自己通过剪拼讨论,并能以小组为单位共同合作完成;让学生亲身体验知识的形成过程,促进学生思维的发展。

面积公式推导教学设计 篇3

  梯形面积计算公式的推导。

  编排意图

  这部分内容的教学是在学习了平行四边形和三角形面积计算的基础上进行的。与前两节一样,教材先通过小轿车车窗玻璃是梯形的这样一个生活实例引入梯形面积计算。然后通过学生动手实验探索出面积计算公式,最后用字母表示出梯形的面积计算公式。但是要求又有提高,不再给出具体的方法,而是要求用学过的方法去推导梯形面积计算公式。这里仍然要运用转化成已学过图形的方法,但是从教材中学生的操作可以看出,方法与途径多了,可以用分割的方法,也可以用拼摆的方法;可以转化为三角形进行推导,也可以转化成平行四边形进行推导。教学建议

  学生经过平行四边形和三角形面积公式的推导,已经知道要把梯形转化为学过的图形进行推导。前面平行四边形和三角形转化的方法不同,平行四边形主要是用割补的方法,而三角形主要用拼摆的方法。本课要求用学过的方法去推导,没有指明具体的方法。在学生操作实验前,可以先回忆一下前面运用过的两种方法,有条件的可以把前面推导的过程制成课件,进行展示,加以回顾。在此基础上放手让学生自己去做,教师不必提出统一的操作要求。2. 梯形面积计算公式推导有多种方法,教材显示了三种方法。(1)两个一样的梯形拼成一个平行四边形。推导过程:

  两个完全一样的梯形可以拼成一个平行四边形,这个平行四边形的底等于梯形的(上底+下底),这个平行四边形的高等于梯形的高,每个梯形的面积等于拼成的平行四边形面积的一半,所以,梯形的面积=(上底+下底)×高÷2(2)把一个梯形剪成两个三角形(见下左图)。推导:

  梯形的面积=三角形1的面积+三角形2的面积

  =梯形上底×高÷2+梯形下底×高÷

  2=(梯形上底+梯形下底)×高÷2

  (3)把一个梯形剪成一个平行四边形和一个三角形(见上右图)。推导:

  梯形的面积=平行四边形面积+三角形面积

  =平行四边形的底×高+三角形的底×高÷2 =(平行四边形的底+三角形的底÷2)×高 =(平行四边形的底+三角形的底÷2)×高×2÷2 =(平行四边形的底×2+三角形的底÷2×2)×高÷2 =(平行四边形的底+平行四边形的底+三角形的底)×高÷2

  因为 梯形的上底=平行四边形的底

  梯形的下底=平行四边形的底+三角形的底 所以梯形的面积=(上底+下底)×高÷2

  第(1)种方法比较容易推导和理解,(2)和(3)因为涉及乘除法运算定律、性质和等式变形,学生的推导会有困难。教学中要鼓励学生用多种方法进行推导,在此基础上进行汇报和交流。可以第(1)种方法为研究重点,让学生叙述推导的过程,得出梯形面积计算公式。(2)和(3)种方法可视学生接受能力,不做统一要求。

  学生在操作实验中,可能会出现更多的方法。例如教材第96页的方法,注意给学生留有较充分的操作和交流时间。推导过程:

  从梯形两腰中点的连线将梯形剪开,拼成一个平行四边形。平行四边形的底等于(梯形的上底+梯形的下底)平行四边形的高等于梯形的高÷2 梯形的面积等于拼成的平行四边形的面积 所以 梯形的面积=(上底 +下底)×高÷2 3.例3及“做一做”。编排意图

  (1)例3应用梯形面积计算公式解决实际问题。

  (2)“做一做”是计算引入部分提出的车窗玻璃的面积,注意是求两个梯形的面积。教学建议

  (1)例3可结合图片和横截面的示意图帮助学生理解横截面的含义,找到直角梯形的高也是它的一个腰长,再应用公式进行计算。

  (2)结合例3和“做一做”,检查学生运用公式计算的情况,强调计算时不要忘记除以2。4.关于练习十七一些习题的说明和教学建议。

  第1、3题是应用梯形面积计算公式求面积。第1题需要先测量计算所需条件的长度,再计算;第3题要选择条件进行计算,有些是间接条件要转化为直接条件。通过练习可以加深学生对梯形面积计算公式的理解和记忆。

  第2、4、5、6题都是应用梯形面积计算公式解决实际问题。

  第2题,飞机模型的机翼是两个完全相同的梯形。求机翼的面积,可以先求出一个梯形的面积,再乘2;也可以根据梯形面积公式的推导经验,设想把两个梯形拼成一个底长100mm+48mm,高250mm的平行四边形,求出它的面积。

  第4题,注意让学生观察图示找到计算所需条件。花坛的三面围篱笆,形成一个直角梯形。20m就是它的高,用46m-20m可以得到梯形上底与下底的和。

  第5题,要结合示意图先让学生理解水渠的横截面。水渠的渠口宽、渠底宽和渠深分别是梯形的上底、下底和高,再计算出梯形的面积。

  第6题,可结合教材中的图使学生理解圆木堆的横截面可以看作一个梯形,梯形的上底长相当于顶层的根数,梯形的下底长相当于底层的根数,梯形的高相当于圆木的层数。所以可以借助梯形面积计算公式计算出圆木的总根数。

  第8*题是选作题。首先要考虑如何剪去一个最大的平行四边形。应该是以梯形上底长度为底长的平行四边形。

  剩下的是三角形,可以用两种方法求面积。方法一 梯形的面积-剪去的平行四边形的面积(2+3.5)×1.8÷2-2×1.8=1.35(cm)

  2方法二用梯形的下底长减去梯形的上底长得到剩下三角形的底长,乘梯形的高, 再除以2,得到剩下的三角形的面积。(3.5-2)×1.8÷2 = 1.35(cm)

  《梯形面积的计算》 教案1

  教学目标:

  (1)理解梯形面积公式的推导过程,会应用公式正确计算梯形的面积。

  (2)培养学生合作学习的能力。

  (3)继续渗透旋转、平移的数学思想。教学重点:理解并掌握梯形面积公式的计算方法。教学难点:理解梯形面积公式的推导过程。教学过程:

  一、复习旧知

  1.求出下面图形的面积。

  2.回忆三角形面积公式推导过程(演示课件:拼摆三角形 下载)

  二、设疑引入

  教师出示一个梯形和一个三角形(已标出底和高)。这个梯形比三角形的面积大还是小?相差多少呢?要想得到准确地结果该怎么办?

  板书课题:梯形面积的计算

  三、指导探索

  第一部分:梯形面积公式的推导。1.小组合作推导公式。

  教师谈话:利用手里的学具,仿照求三角形面积的方法推导梯形面积的计算公式

  提纲:

  2.(演示课件:拼摆梯形 下载)

  电脑演示转化推导的全过程。

  3.由学生自己说明“梯形面积=(上底+下底)×高÷2”的道理。4.概括总结、归纳公式。

  提问:(1)(上底+下底)×高求的是什么?

  (2)为什么要除以2?

  板书:梯形面积=(上底+下底)×高÷2

  第二部分,应用公式计算。

  1.出示例

  1、一条新挖的渠道,横截面是梯形,渠口宽2.8米,渠底宽1.4米,渠深1.2米。它的横截面的面积是多少平方米?

  2.提问:已知什么?求什么?怎样解答?

  3、列式解答

  (2.8+1.4)×1.2÷2

  =4.2×1.2÷2

  =2.52(平方米)

  答:它的横截面的面积是2.52平方米。

  四、巩固练习

  1、计算下面梯形的面积。

  2.动手测量学具(梯形)的相关数据,并计算梯形学具的面积。

  3.下面是一座水电站拦河坝的横截面图,求它的面积。

  五、质疑总结。

  1.师生共同回忆这节课所学习的内容。

  提问:求梯形的面积为什么要除以2?

  求梯形面积需知哪些条件?

  2.引导学生质疑,组织学生解题。

  六、板书设计

面积公式推导教学设计 篇4

   教材分析:

  教材首先设计了估算飞标板面积的活动。呈现了两种估算方法:一是先估算每个小三角形的'面积,再估算飞标板的面积;二是把飞标板剪开,拼成近似的长方形,然后利用长方形的面积公式计算出飞标板的面积。接着是,小组合作探索圆面积的计算公式,在试一试中,让学生用刚推导出的面积公式计算飞标板的面积。教学中要给学生充分的观察、动手操作和讨论交流的空间,使学生学会转化的数学方法,体会极限的思想。

   学情分析:

  在学习本课内容前,学生已经认识了圆,会求圆的周长,在学习长方形、平行四边形、三角形、梯形等平面图形面积时,已学会了用割、补、移等方法,把把新知识转化为旧知识,探究推导直线平面图形的面积。因此教学本课时,可引导学生用以前学的“转化”的数学思想来推导圆的面积公式,在推导学习中不仅扩大了学生的知识,提高学生分析、解决问题的策略,空间观念也得到进一步的发展,为以后学习圆柱、圆锥等知识打好良好基础。

   教学目标:

  知识与技能目标:

  1、理解圆的面积计算公式的推导,让学生利用已有的知识,运用转化的思考方法,推导出圆面积的计算公式。

  2、初步运用圆面积计算公式进行圆面积的计算。

  过程与方法目标:

  通过教师设置问题情境----学生猜想----小组合作----表达交流----归纳总结,引导学生通过多次不同的实验,运用转化方法,通过多媒体课件演示,把曲线平面图形转化为直线平面图形,推导圆的面积计算公式。

  情感态度和价值观:

  通过圆面的剪拼,境况学生操作、观察、分析的能力,渗透极限思想。

   教学重难点:

  教学重点:圆面积公式的推导。

  教学难点:极限思想的渗透与公式的推导。

   教学方法和手段:

  教学方法:通过直观教具演示和课件展示,学生通过猜想然后再用合作学习法动手操作验证猜想,得出结论。

  教学手段:利用游戏、媒体等手段激发学生思维,让学生亲自动手操作,感受学习的乐趣。

   教具准备:多媒体课件一套、圆形纸片。

   学具准备:两个完全一样的圆片、透明胶带、刻度尺、量角器、剪刀、小刀。

   一、复习引入

  1、幻灯片出示复习题目。

  2、激趣导入

  同学们,今天我请你们欣赏一幅图。请看!(课件出示)在欣赏图的同时,思考右面的问题。学生猜想牛最多吃多少草是什么的图形?(课件出示)是一个圆形,要求牛吃多少草也就是求圆的面积,引出圆的面积(板书课题)

  【设计意图:兴趣是最好的老师。在教学过程的伊始就用这个生活中的数学问题来导入新课的学习,既可以激起学生学习的兴趣,又可以为后面面积的学习奠定基础,更可以让学生从课堂上涉猎生活中的数学问题,让学生体验到数学来源于生活。】

   二、合作探究,推导公式

  1、圆面积定义

   2、圆面积公式推导

  那么怎样计算圆的面积呢?我们知道圆有大有小,如果用面积单位直接

  去度量,显然是行不通的。请同学们回忆一下:平行四边形、三角形、梯形的面积分别是怎样计算的?

  教师根据学生说的过程,通过课件演示出转化的过程。

  【设计意图:平行四边形、三角形和梯形的公式推导过程是学生迁移的基础。这一环节的设计既为了勾起学生对已有知识的回忆,更是为了让后进生能够掌握新知打下良好的基础。】

  想一想:这些图形面积公式的推导过程有什么共同点?(学生回答)

  下面请同学们小组合作,动手剪一剪、拼一拼,看可以把圆转化成什么图形?

  (小组合作,探究交流。)

  谁能告诉老师你们小组把圆转化成了什么图形?(小组汇报并展示所拼图形)

  小组1:我们平均分成了8份,拼成的图形非常像平行四边形。

  小组2:我们把圆平均分成了16份,拼成的图形也像个平行四边形。

  小组3:我们把圆平均分成了16份,拼成的图形很像一个三角形。

  小组4:我们拼的图形像个梯形。

  小组5:我们平均分成了4份,拼成的图形像平行四边形

  大家真了不起!把圆转化成了这么多近似的图形,观察所拼平行四边形的三种情况,请看课件(展示课件),同时请同学们思考,如果把圆平均分的份数越多,拼成的图形会怎样呢?

  学生回答:分的份数越多越接近长方形。

  下面请同学们仔细观察、分析拼成的长方形与圆的关系,小组讨论并思考以下几个问题:

  (1)圆的面积与这个长方形的面积有什么关系?

  (2)这个长方形的长与圆的周长有什么关系?

  (3)这个长方形的宽与圆的半径有什么关系?

  (4)如果圆的半径是r,这个长方形的长和宽各是多少?

  (小组合作,探究交流,推导出面积公式)

  小组内说一说圆面积计算公式推导过程,师板演。

  小组合作推导三角形和梯形的面积公式,并汇报交流,师演示课件。

  【设计意图:这节课的重点是圆的面积公式的推导,为了让学生在大脑中烙下深深的印痕,这一环节的设计让学生在课上多动手,去剪、去拼、去贴,多动脑,去思考圆的转化方法,这样学生在课上手脑并用,个个精神十足,根本不可能再出现课上走神的现象。】

  小结:同学们通过大胆猜想和动手验证,终于得到了圆面积的计算公式,老师祝贺大家取得成功!那么,求圆的面积需要什么条件呢?(半径)

   三、实践运用,体验生活

  那么圆的面积公式到底有什么用呢?

  现在我们会求牛最多吃多少草吗?

   四、课堂小结

  这节课你有什么收获,学到了哪些知识?

   五、课外思考。(幻灯片出示)

  已知一个圆的周长,你能计算这个圆的面积吗?

   板书设计:

  圆的面积

  圆所占平面的大小叫做圆的面积

  圆的面积=近似长方形的面积

  圆的面积圆周长的一半圆的半径

  ||||||

  长方形的面积长宽

  S=c/2×r

  =2πr/2×r

  =πr×r

  =πr2

面积公式推导教学设计 篇5

  教学目的:

  1、通过让学生主动探索三角形面积计算公式,经历三角形面积公式的探索过程,进一步感受转化的数学思想和方法。

  2、使学生理解三角形面积计算公式,能正确地计算三角形的面积。

  3、通过操作、观察、比较,培养学生问题意识、概括能力和推理能力,发展学生的空间观念。

  教学过程:

  一、阅读质疑。

  先请同学们自己阅读以下材料,然后以小组为单位交流一下你们都学会了哪些知识,可以提出什么问题,并把问题随手记录下来。

  1厘米

  学生阅读后首先回顾了平行四边形、长方形地面积公式及推导过程。然后学生提出了质疑,主要问题有:

  (1)数方格怎么求三角形的面积?

  (2)不数方格怎么求三角形的面积?有没有一个通用公式?

  (3)能把三角形也转化成我们学过的图形求面积吗?

  (4)转化成的这些图形跟三角形有什么关系吗?

  (析:孔子曾说:疑是思之始,学之端。这里老师打破了学生等待老师提问的常规,要求学生把阅读材料作为学习主题,通过阅读提出问题,真正体现了以生为本。)

  二、点拨激思

  1.数方格的问题

  学生根据学习材料可以解答用数方格的方法求三角形的面积。

  老师接着问:有一个很大的三角形池塘,你来用数方格求它的面积。

  学生小声笑了起来。为什么笑?老师问到。学生说数方格太麻烦了,池塘也不好划分方格。

  嗯,看来数方格求面积是有一定局限性的,今天我们就来研究三角形的面积。

  (析:一石激起千层浪,学生由数方格方法的局限性这一认识的困惑与冲突,有效地引发了学生探究面积计算公式的生长点,使学生有了探究发现的空间。)

  2.转化的问题

  你想把三角形转化成什么图形?学生会转化成平行四边形、长方形、正方形。梯形行吗?这时学生会有两种答案,有的说行,有的说不行,为什么不行?老师追问,学生在讨论中达成共识:必须转化成学过的,可以计算面积的图形。

  师:三角形怎样才能转化成这些图形?请同学们利用手中学具,通过拼一拼,折一折,剪一剪,利用转化成这些图形来解决下面的几个问题。

  (析:这里把新问题转化成了老问题来解决,有效地把学法指导融入到了教学中,给学生创造了更广阔、更真实的自主空间,无疑有利于学生可持续性发展。)

  三、探索解疑

  学生操作,讨论,汇报。

  1.转化的图形

  学生的答案有很多种,把两个完全一样的三角形转化成了平行四边形、长方形和正方形,还有把一个三角形沿高剪下拼成了正方形、长方形,还有把一个三角形沿中位线对折,两边也折转化成了2层的长方形。

  2.解决转化前后图形间的关系

  (1)大小的关系

  通过比较学生们发现,两个完全一样的三角形拼成的图形跟三角形关系是S=S2。一个三角形转化成的图形跟三角形关系是S=S

  (2)底和高的关系

  拼割前后各部分有什么关系?(指底和高)能推导出三角形的面积公式吗?

  生1:两个完全一样的锐角三角形转化成了平行四边形,三角形的高就是平行四边形的高,三角形的底就是平行四边形的底。因为平行四边形的面积是底高,它是由两个三角形拼成的,所以三角形的面积是底高2

  师:思路真清晰,为什么2,谁还想说。

  (学生依次讲拼成的长方形,正方形这两种情况)

  (3)公式推导

  师;同学们真了不起,想出了这么多好方法推出了三角形的面积公式,那谁能给大家说说三角形的面积等于什么?

  生:底高2

  师:如果我用S表示三角形的面积,a表示三角形的底,h表示三角形的高,那三角形的面积公式该怎么表示呢?

  生:S=ah2

  (4)推导拓展

  师:我们再来看第二组,你能通过一个三角形的转化来推导它的面积公式吗?

  学生1:我是把一个等腰三角形对折,然后从中间剪开拼成了一个长方形,这个长方形的底是三角形的底的一半,高是三角形的高,因为长方形的面积是长宽,长方形的面积等于三角形的面积,所以三角形的面积是底高2。

  学生2:我是把一个直角三角形的上面对折下来,然后剪开,把它补在一边,拼成了一个长方形。这个长方形的长是三角形的底,高是三角形高的一半,所以也能推出三角形的面积是底高2。

  生3:我是把一个三角形沿着两边的重点对折,然后又把底边的重点这样对折,折成了一个长方形,这个长方形的底是三角形底的一半,宽是三角形高的一半,再乘以2,也可以推出三角形的面积是底高2

  师:这个方法怎样,谁来评价一下。学生评价,太棒了。

  生4:我还有一种办法。把一个长方形沿对角线折叠,因为长方形的面积是长宽,长方形是两个三角形拼成的,所以,三角形的面积是底高2

  (析:把探究的权利充分的交给学生,学生自由组合,利用已有的知识经验,通过折、移、拼、剪,得到了不同的图形,虽然是不同的角度、不同的手段、不同的方法,但达到了同一目的,得到了正确的三角形面积计算公式,更重要的是探究过程中学生的思维空间得到了拓展,思维个性得到了发挥。)

  三归纳小结

  出示学习材料2,学生阅读后谈感想。体会祖国的古代科学家得了不起,2000多年前就推导出了这个公式。今天同学们通过自己的研究也推导出了三角形的面积计算公式,说明同学们也很聪明,相信将来你们还会有更多更大的发现,到那时你们的名字也将载如史册,大家有信心吗?

  师:好,今天这节课我们研究了三角形的面积,你们学到了哪些知识,有什么收获?回去继续反思整理,写出你们的反思报告。

  (析:课堂总结不仅要关注学生学会了什么,更要关注用什么方法学,学后有什么感想,要有意识的促进学生反思:我还有什么疑问?打算怎么办?,把课后反思纳入到学习的系统连续的过程中。)

  总析:本节课有以下两个特点

  1.充分体现了问题意识的培养。

  老师用了一种新的教学流程进行教学。即以提出问题,研究问题,解决问题为主线。当一个问题得到解决后,新的问题接着出现,学生始终处于愤和悱及对问题的探究中,有效地调动学生的学习的兴奋点,学生的问题意识得到发展。

  2.重视研究问题的过程。

  这节课以思维训练代替了重复练习,以发展学生的创造思维为重点,引导学生用多种方法进行转化,然后通过观察、操作、比较、归纳、抽象概括推导出公式,没有通过太多的练习却获得了超常规的解题能力。这个过程是学生自主探究的过程,这个过程是学生综合能力培养和提高的过程。

面积公式推导教学设计 篇6

  (北师大版)五年级数学上册教案 梯形的面积计算公式推导

  教学设计理念:

  培养学生的创新思维,在学生已有认知结构和经验的基础上,有计划地培养学生分析、综合、比较、概括、判断、推理等能力,提高学生思维的发展水平。教学设计:

  一、创设情境,揭示课题

  师:同学们,我们前面学习的平行四边形,三角形的面积公式是怎样推导出来的?

  生:平行四边形垢面积是用割补法把它变成与它面积面积相等的长方形,由长长方形面积推导出平行四边形的面积计算公式。

  生:三角形的面积是把两个完全相同的三角形拼成一个平行四边形,因为三角形的面积是这个平行四边形面积的一半,所以由此推导出三角形的面积计算公式。

  生:三角形也可以用割补法把它拼成一个平行四边形,面积也是这个平行四边形的一半。师:同学们能不能用学过的这些方法,设计一种推导方案,推导出梯形的面积计算公式呢?

  [评析:通过上面的教学揭示课题,提示学生可以把已学过的学习方法运用到新的学习情境中,激发了学生的学习动力,使学生有解决问题的兴趣与信心。]

  二、学生操作实验,主动探究

  让学生先自己设计推导方案,再汇报交流

  生1:我把梯形分割成两个三角形,因为这两个三角形的高相等,所以一个三角形的面积是上底×高÷2,另一个三角形的面积是下底×高÷2,由此推导出梯形面积计算公式=上底×高÷2+下底×高÷2。

  生2:我把梯形分割成一个平行四边形和一个三角形。因为平行四边形的面积是下底×高,三角形的面积是(下底--上底)×高÷2,所以梯形的面积计算公式=下底×高+(下底-上底)×高÷2。

  生3:我把梯形分割成两个等高的小梯形,(把上面小的梯形倒过来和下面的梯形)拼成一个平行四边形,因为平行四边形的底就是梯形的上底和下底的和,高是原来的一半,所以梯形的面积计算公式=(下底+上底)×(高÷2)。

  生4:我把两个相同的梯形拼成一个平行四边形,平行四边形的底就是梯形的上底和下底,高没有变,所以梯形的面积计算公式=(下底+上底)×高÷2 [评析:学生调动已有的知识和经验,通过操作,验证等活动,概括出一个计算程序,就是公式,教师为学生提供充分的机会,使学生在交流的过程中理解和掌握了数学知识与技能,数学思想与方法。]

  三、比较分析,优化方法

  师:同学们想出了这么多个推导方法,更重要的是掌握解决问题的方法,能把一个新问题转化成旧问题解决。这么多的推导方法中,哪些更容易理解、计算更简便呢?

  经过学生充分讨论,汇总出下面方法: 1.梯形面积=下底+上底)×高÷2 2.梯形面积=(下底+上底)×(高÷2)。

  师:这两个公式计算进更简便快捷,同学们可以用这两个公式来计算梯形的面积。

  [评析;通过学生讨论、分析、比较、选择出最佳方法。在实际应用中,教师应提倡算法多样化,这样不至于抑制学生的灵感和创造。] 总评:

  本节课,教师引导学生创造出性地学习,为学生提供广阔的空间,让他们自己选择解决问题的策略,设计解决问题的方案,学生通过实验操作、分析推理等活动,总结出解决问题的方法。其次,教师没有强制推行,硬性规定用书本上的公式计算,而是尊重学生的探究成果,创设了一定的情境,让学生讨论、分析、比较、亲身体验这些方法优化的过程,并从中选择出最简捷有效的方法,充分体现了尊重学生个性的新理念。

  想了解更多实用资料网的资讯,请访问: 实用资料

本文来源:https://www.liuxue86.com/a/5136494.html
延伸阅读
每个雇主单位都会有他们自己的特定规章制度,其中一些规定的条款需要及时修订。这些规章制度的内容都是公司文化的一部分,每个公司都需要建立一套规章制度是非常必要的。这是出国留学网编辑为您
2023-09-07
教案课件是老师上课之前准备好的,但课件的内容需要老师自己进行设计和完善。教案是帮助教师提高教学水平的一个工具。在本文中,我们将重点关注与“消防安全教育课件”相关的一些信息。相信阅读
2023-09-07
高质量的范文可以给我们提供帮助,通过学习优秀范文,我们可以更好地掌握写作中的细节和技巧。那么在准备书写范文时,我们还需要做哪些准备呢?栏目小编为大家整理了一些关于“经理承诺书”的资
2023-09-07
在我一生中最悲惨的一个时期,我曾经有过那类的想法:去年夏天在我回到这儿附近的地方时,这想法还缠着我;可是只有她自己的亲自说明才能使我再接受这可怕的想法。~~你在收集类似的相关句子吗
2023-09-07
星光不问赶路人,时光不负有心人,主持词的目的是让活动更加具有时代性和领先性。主持词是掌握演出进度的方法,出国留学网为您筛选出了一些有关“艺术节主持人开场白”的知识点供您学习参考,如
2023-09-07
圆是数学几何中一个重要的图形,在考试中也经常出现相关题目。下面是由出国留学网编辑为大家整理的“圆面积计算公式的推导过程是怎样的”,仅供参考,欢迎大家阅读本文。圆的相关公式面积公式圆
2021-11-20
梯形是只有一组对边平行的四边形。这个几何图形在考试中经常出现。下面是由出国留学网编辑为大家整理的“梯形的面积公式是什么怎么推导出来的”,仅供参考,欢迎大家阅读本文。梯形的面积公式是
2021-11-17
圆锥是数学几何中重要的图形,在考试中也经常出现相关题目。下面是由出国留学网编辑为大家整理的“圆锥表面积公式有哪些推导过程是怎样的”,仅供参考,欢迎大家阅读本文。圆锥的表面积计算方式
2021-11-23
教师是我们学习生活之中的组织者,教师借助教案能制定相应的教学措施,写教案时有什么可借鉴的模板吗?出国留学网花时间专门编辑了三年级面积和面积单位教学设计,仅供参考,希望能为你提供参考
2023-03-03
数学的公式都是由简单到复杂的,很多时候,我们学着学着就学不下去了,其实最主要的还是公式不够了解,出国留学网的小编现在就带你们去看看这二倍角公式如何推导,感兴趣的朋友们不要错过了哦。
2022-04-21