出国留学网专题频道三角形栏目,提供与三角形相关的所有资讯,希望我们所做的能让您感到满意! 由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形叫做三角形。三角形的内角和为180度。 平面上三条直线或球面上三条弧线所围成的图形,三条直线所围成的图形叫平面三角形;三条弧线所围成的图形叫球面三角形,也叫三边形。
04-15
数学在每一个学习阶段都是有着许多的新知识,就拿几何来说吧,几何知识也是难道不少的学生,最近有些同学对于三角形面积这方面知识也是遇到不到的难题,想知道三角形面积公式有哪几种,今天就让出国留学网来告诉大家三角形面积公式。
三角形面积公式是指使用算式计算出三角形的面积,同一平面内,且不在同一直线的三条线段首尾顺次相接所组成的封闭图形叫做三角形,符号为△。
常见的三角形按边分有等腰三角形(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形)、不等腰三角形;按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。
三角形面积公式:S=1/2ah(面积=底×高÷2。其中,a是三角形的底,h是底所对应的高)。
1、三角形面积最常用的面积公式——公式一
S=(底x高)÷2=(1/2)x底x高。这里的“底”可以为三角形三条边中的任意一条边,而高则是顶点到底边的距离。
2、“两边夹一角”形式的三角形面积公式——公式二
设三角形ABC三个角A、B、C的对边分别为a、b、c,三角形ABC的面积为S,则(1)S=(1/2)absinC;(2)S=(1/2)acsinB;(3)S=(1/2)bcsinA。
3、利用三角形周长和内切圆半径求三角形面积公式——公式三
设三角形ABC三个角A、B、C的对边分别为a、b、c,三角形内切圆的半径为r,三角形ABC的面积为S,则有:S=(1/2)x(a+b+c)r.
【注】这个面积公式表明:三角形的面积等于“三角形周长与内切圆半径乘积的一半”。
4、海伦-秦九韶公式
设三角形ABC三个角A、B、C的对边分别为a、b、c,三角形ABC的面积为S,则S=“p(p-a)(p-b)(p-c)的算术平方根”。其中p等于三角形周长的一半。即p=(1/2)x(a+b+c)。
以上就是出国留学网给大家分享了关于三角形面积公式的一些基础知识,如果你在这方面的知识不太扎实的话,最好找老师来指导一下自己,毕竟数学这门科目无论是在哪个学习阶段都是甚为重要的。
推荐阅读:
12-09
在初中学习了用勾股定理来求三角形的边,步入高中之后,才开始学习更详细的三角形求边公式。下面是由出国留学网编辑为大家整理的“三角形边长公式是什么 几年级学的”,仅供参考,欢迎大家阅读本文。
三角形边长公式
三角形边长公式为:a²=b²+c²-2bc×cosA,可以变形为cosA=(b²+c²-a²)÷2bc。在任意一个三角形中,任意一边的平方等于另外两边的平方和减去这两边的2倍乘以它们夹角的余弦值,即:在△ABC中,a²=b²+c²-2bc×cosA。
三角形的边长怎么求
1、在任何一个三角形中,任意一边的平方等于另外两边的平方和减去这两边的2倍乘以它们夹角的余弦 几何语言:在△ABC中,a²=b²+c²-2bc×cosA 此定理可以变形为:cosA=(b²+c²-a²)÷2bc
2、已知,角A,B,C,边a,求:b,c
根据公式:
a/sinA = b/sinB = c/sinC
b = a(sinB/sinA)
c = a(sinC/sinA)
a*sinB = b*sinA = hc (c边的高)
拓展阅读:如何学好高中数学
1 、课前预习,上课听课,课下复习是基础
不要小看在课前翻看一下这节课即将讲解的内容,因为他不仅可以使你快速融入老师的课堂,紧跟老师的步伐,还可以使你加深对所学内容的理解。上课听课,保持高效的课堂效率是重中之重,只要充分把握课堂,你课下只需对自己不理解的部分问老师或者问同学来解决,如果不把握课堂听讲,即使课下花十倍的时间来补偿,也不一定会达到课上认真听课的效果。
2、抓住课堂是最基本的条件
还有就是课下复习,会使你的效率事半功倍,通过复习,可以回忆起你的预习和老师上课所讲的内容,在通过习题加以巩固,并接下来不定时的翻阅。这样你可以对这方面的知识有深刻的理解和有自己独特的见解,并且牢固的掌握。
3、巧刷题,题型必须得见
刷题和掌握大量题型是对于学好高中数学是重要的手段,所以我们可以通过将老师给我们做的总结和自己的做题感受相结合起来,在多加练习,把老师给布置的相同题型刷熟练,在定期的不断巩固,复习。这样我们才可以完全把这一类的题型完全消化掉。比如数列部分,我们可以分为分组求和、并列求和、倒叙相加求和、错位相减发、累加发、累乘法等不同题型,我们只需要将每个题型都掌握并与题做到一一对应。这样,我们面对题不会出现不知道如何下手的尴尬情况。
...11-24
等腰三角形是数学几何中一个重要的图形,在考试中也经常出现相关考点。下面是由出国留学网编辑为大家整理的“等腰三角形三线合一的用法有哪些”,仅供参考,欢迎大家阅读本文。
等腰三角形三线合一
三线合一,即在等腰三角形中顶角的角平分线,底边的中线,底边的高线,三条线互相重合。例:已知等腰三角形的底边上的中线和高为一条,则可以说这条线段是底边对应顶点的角平分线。
应用
三线合一中的三线是在等腰的三角形的,它们分别是,一条是与顶角有关的,顶上的角的平分线,另两条是与底边(不是腰,但等边三角形正三角形特殊)有关的的,一条是底边的高,另一条是底边的垂直平分线。这是等腰三角形的一特殊的性质,应用它可以处理许多平面几何问题。
三线合一逆命题
①如果三角形中有一角的角平分线和它所对边的高重合,那么这个三角形是等腰三角形。
②如果三角形中有一边的中线和这条边上的高重合,那么这个三角形是等腰三角形。
③如果三角形中有一角的角平分线和它所对边的中线重合,那么这个三角形是等腰三角形。
拓展阅读:等腰三角形的性质
1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。
2.等腰三角形的顶角平分线,底边上的中线,底边上的高相互重合(简写成“等腰三角形三线合一”)。
3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
7.一般的等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴。但等边三角形(特殊的等腰三角形)有三条对称轴。每个角的角平分线所在的直线,三条中线所在的直线,和高所在的直线就是等边三角形的对称轴。
8.等腰三角形中腰长的平方等于底边上高的平方加底的一半的平方(勾股定理)。
9.等腰三角形的腰与它的高的关系:腰大于高;腰的平方等于高的平方加底的一半的平方。
...11-17
直角三角形是数学几何中一个重要图形,在考试中也时常作为考点出现。下面是由出国留学网编辑为大家整理的“直角三角形面积公式是什么怎么算”,仅供参考,欢迎大家阅读本文。
直角三角形面积公式
直角三角形面积常用公式S=1/2ab(公式中a,b分别为直角三角形的两直角边长)。
三角形周长公式:三角形的周长为三边之和。
直角三角形性质
1、直角三角形两直角边的平方和等于斜边的平方。如图,∠BAC=90°,则AB²+AC²=BC²(勾股定理)
2、在直角三角形中,两个锐角互余。如图,若∠BAC=90°,则∠B+∠C=90°
3、直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。该性质称为直角三角形斜边中线定理。
4、直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
5、如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:
(1)(AD)²=BD·DC。
(2)(AB)²=BD·BC。
(3)(AC)²=CD·BC。
拓展阅读:直角三角形的判定定理
判定1:有一个角为90°的三角形是直角三角形。
判定2:若a²+b²=c²的平方,则以a、b、c为边的三角形是以c为斜边的直角三角形(勾股定理的逆定理)。
判定3:若一个三角形30°内角所对的边是某一边的一半,那么这个三角形是以这条长边为斜边的直角三角形。
判定4:两个锐角互余的三角形是直角三角形。
判定5:证明直角三角形全等时可以利用HL,两个三角形的斜边长对应相等,以及一个直角边对应相等,则两直角三角形全等。(定理:斜边和一条直角对应相等的两个直角三角形全等。简称为HL)
判定6:若两直线相交且它们的斜率之积互为负倒数,则这两直线垂直。
判定7:在一个三角形中若它斜边上的中线等于该斜边的一半,那么这个三角形为直角三角形。
...11-17
三角形是数学几何中一个重要的图形,在考试中相关知识点出现的频率很高。下面是由出国留学网编辑为大家整理的“三角形边长计算公式是什么 该如何计算”,仅供参考,欢迎大家阅读本文。
三角形边长公式
三角形边长公式为:a²=b²+c²-2bc×cosA,可以变形为cosA=(b²+c²-a²)÷2bc。在任意一个三角形中,任意一边的平方等于另外两边的平方和减去这两边的2倍乘以它们夹角的余弦值,即:在△ABC中,a²=b²+c²-2bc×cosA。
三角形的边长该如何计算
1.在任何一个三角形中,任意一边的平方等于另外两边的平方和减去这两边的2倍乘以它们夹角的余弦 几何语言:在△ABC中,a²=b²+c²-2bc×cosA 此定理可以变形为:cosA=(b²+c²-a²)÷2bc
2.已知,角A,B,C,边a,求:b,c
根据公式:
a/sinA = b/sinB = c/sinC
b = a(sinB/sinA)
c = a(sinC/sinA)
a*sinB = b*sinA = hc (c边的高)
拓展阅读:三角形勾股定理
在一个直角三角形中,直角对边的是斜边,2边是直角边。经研究发现2条直角边的平方和等于斜边的平方,这是勾股定理的定义。
直角三角形两直角边分别是a、b,斜边是c。
a²+b²=c²;
c²-a²=b²;
c²-b²=a²。
...11-17
在解决数学问题时,如果能够熟练掌握公式,那么对于解题事半功倍。下面是由出国留学网编辑为大家整理的“三角形的面积公式是什么 该怎么计算”,仅供参考,欢迎大家阅读本文。
三角形的面积公式
1.三角形面积=1/2×底×高;或者说,三角形面积=(底×高)÷2;
2.已知三角形三边a,b,c,则(海伦公式)(S=(a+b+c)/2)。
三角形的性质
角形任意两边之和大于第三边,任意两边之差小于第三边。 三角形两边的差小于第三边
1、在平面上三角形的内角和等于180°(内角和定理)。
2、在平面上三角形的外角和等于360° (外角和定理)。
3、在平面上三角形的外角等于与其不相邻的两个内角之和。
4、一个三角形的三个内角中最少有两个锐角。
5、在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。
6、 在一个直角三角形中,若一个角等于30度,则30度角所对的直角边是斜边的一半。
7、三角形任意两边之和大于第三边,任意两边之差小于第三边。 三角形两边的差小于第三边
拓展阅读:证明全等三角形的条件
1.两个三角形对应的三条边相等,两个三角形全等,简称“边边边”或“SSS"。
2.两个三角形对应的两边及其夹角相等,两个三角形全等,简称“边角边”或“SAS”。
3.两个三角形对应的两角及其夹边相等,两个三角形全等,简称“角边角”或“ASA”。
4.两个三角形对应的两角及其一角的对边相等,两个三角形全等,简称“角角边”或“AAS”。
5.两个直角三角形对应的一条斜边和一条直角边相等,两个直角三角形全等,简称“直角边、斜边”或“HL”。
...
直角三角形是数学几何中一个十分常见的图形,那么关于直角三角形的相关知识点大家知道吗?下面是由出国留学网编辑为大家整理的“直角三角形面积公式是什么 怎么算”,仅供参考,欢迎大家阅读本文。
直角三角形面积公式
因为直角三角形的两条直角边分别相当于三角形的底和高,所以直角三角形的面积,可以用两条直角边的长度相乘再除以2。
s=(1/2)*底*高
s=(1/2)*a*b*sinC (C为a,b的夹角)
s=1/2acsinB
s=1/2bcsinA
直角三角形性质
1、直角三角形两直角边的平方和等于斜边的平方。若∠BAC=90°,则AB²+AC²=BC²(勾股定理)
2、在直角三角形中,两个锐角互余。如图,若∠BAC=90°,则∠B+∠C=90°
3、直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。该性质称为直角三角形斜边中线定理。
4、直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
5、在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。
6、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。
拓展阅读:直角三角形的判定
1.有一个角为90°的三角形是直角三角形;
2.一个三角形,如果这个三角形一边上的中线等于这条边的一半,那么这个三角形是以这条边为斜边的直角三角形;
3.若a^2+b^2=c^2,则以a、b、c为边的三角形是以c为斜边直角三角形(勾股定理的逆定理)。
...
三角形的面积计算是数学里常见的问题,那么三角形面积公式有几种呢?下面是由出国留学网小编为大家整理的“三角形面积公式有几种”,仅供参考,欢迎大家阅读。
1.已知三角形底a,高h,则等腰三角形的面积为 S=ah/2。
2..已知三角形三边a,b,c,则 S=√p(p-a)(p-b)(p-c) [p=(a+b+c)/2]
3.已知三角形两边a,b,这两边夹角C,则 S=(a*b*sinC)/2
4.设三角形三边分别为a、b、c,内切圆半径为r,则三角形面积 S=[(a+b+c)r]/2
5.设三角形三边分别为a、b、c,外接圆半径为R,则三角形面积 S=abc/4R
6.海伦——秦九韶三角形中线面积公式:
S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3 其中Ma,Mb,Mc为三角形的中线长.
7.已知三角形的三条边为a,b,c,三角形的角为A,B,C,则三角形面积为
S=1/2absinC=1/2acsinB=1/2bcsinA
特殊三角形的面积公式
(一)等腰直角三角形
若假设等腰直角三角形两腰分别为a,b,底为c,则可得其面积:
S=ab/2。
且由等腰直角三角形性质可知:底边c上的高h=c/2,则三角面积可表示为:
S=ch/2=c*c/4。
(二)等边三角形
已知等边三角形的变成为a,则等边三角形的面积为
S=1/2*a*a*sinA=1/2ah。
使用底和高进行计算
1.找出三角形底和高的长度。三角形的“底”就是它的其中一条边,通常指位于底部的侧边。“高”是指从底边到三角形顶部最高点的长度。当你从三角形的底边向对面顶点作垂线,画出的这条线段就是三角形的高。这些信息应该是已知的,或是可以通过测量得到的。
例如,有一个三角形,经测量得到底边长5厘米,高3厘米。
2.写下用于计算三角形面积的公式。面积公式是:面 积=bh/2,这里的b是三角形的底边长,h是三角形的高。
3.将底边长和高带入公式。将两个数值相乘,然后用得到的结果除以2。就能得到三角形面积的数值,单位是平方形式。
4求直角三角形的面积。由于直角三角形的两条边是相互垂直的,因此,一条直角边相对于另一条直角边来说就是三角形的高,另一条边就是底边。因此,就算没有明确给出底边长和高,但如果已知两条直角边长,就相当于知道底边长和高了。
使用边长进行计算
计算三角形的半周长。半周长等于图形周长的一般。想算出三角形的半周长,需要先将三角形的三条边长加起来求出周长,然后除以2。
使用等边三角的边长进行计算
1求三角形一条边的边长。等边三角形是三条边边长相等、三个角角度相同的三角形,所以如果你知道了一条边的边长,就相当于知道了所有边的边长。
2.列出等边三角形的...
三角形面积怎么算呢?公式又有哪些呢?感兴趣的小伙伴们快来和小编一起看看吧。下面是由出国留学网小编为大家整理的“三角形面积公式小学有哪些”,仅供参考,欢迎大家阅读。
三角形面积公式小学有哪些
三角形的面积为底乘高除以二。三角形周长公式:三角形的周长为三边之和。同一平面内,且不在同一直线的三条线段首尾顺次相接所组成的封闭图形叫做三角形。常见的三角形按边分有等腰三角形、不等腰三角形;按角分有直角三角形、锐角三角形、钝角三角形等。
(1)三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边。
用字母可表示为:a+b>c, a+c>b, b+c>a;|a-b|。
(2)判断三条线段a,b,c能否组成三角形:
①当a+b>c,a+c>b,b+c>a同时成立时,能组成三角形;
②当两条较短线段之和大于最长线段时,则可以组成三角形。
(3)确定第三边(未知边)的取值范围时,它的取值范围为大于两边的差而小于两边的和,即|a-b| 。
拓展阅读:三角形的特性是什么
①、三角形的定义:由三条线段围成的图形(每相邻两条线段的端点相连或重合),叫做三角形。
②、从三角形的一个顶点到它的对边做一条垂线,顶点和垂足间的线段叫做三角形的高,这条对边叫做三角形的底。 三角形只有3条高。 重点:三角形高的画法。
画高:三角板的一条直角边与底对齐(重合),另外一条直角边通过底相对应的顶点,沿着直角边画一条虚线,标上直角符号和高。简记:一重,二过,三画,四标。
分别画出它的三条高:
锐角三角形的三条高都在三角形内;直角三角形有两条高落在两条直角边上(直角三角形的两条直角边互为“底”和“高”);钝角三角形有两条高在三角形外。
规定:为了表达方便,用字母A、B、C分别表示三角形的三个顶点,三角形可表示成三角形ABC。
切记:三角形有三条边,三个内角,三个顶点。
易错题:直角三角形只有一条高。
③、三角形的特性:三角形具有稳定性(也就是当一个三角形的三条边的长度确定后,这个三角形的形状和大小都不会改变),生活中很多物体利用了这样的特性。如:人字梁、斜拉桥、自行车车架。
④、三角形边的特性:三角形任意两边的和大于第三边。
方法:已知三角形的两边分别是a和b,则第三边的范围是:
a-b<第三边
技巧: 判断三条线段是否能围成三角形,只要把最短的两条边相加与最长变比较即可。如果最短的两条边之和大于第三边,也就证明任意两条边之和大于第三边。
...05-26
不论是生活中和数学中,同学们都能接触到不同的三角形,那么直角三角形的边长关系有哪些呢。以下是由出国留学网编辑为大家整理的“直角三角形边长关系有哪些”,仅供参考,欢迎大家阅读。
1、三角形两边之和大于第三边,两边之差小于第三边。(三角形两边之和大于第三边中的两边是指两条较小的边,两边之差小于第三边的两边是指两条较大的边。)
2、在一个直角三角形中,若一个角等于30度,则30度角所对的直角边是斜边的一半。直角三角形的两条直角边的平方和等于斜边的平方(勾股定理)。勾股定理逆定理:如果三角形的三边长a,b,c满足a²+b²=c²,那么这个三角形是直角三角形。
3、直角三角形斜边的中线等于斜边的一半。
4、三角形的三条角平分线交于一点,三条高线的所在直线交于一点,三条中线交于一点。
5、三角形三条中线的长度的平方和等于它的三边的长度平方和的3/4。
6、等底同高的三角形面积相等。
7、底相等的三角形的面积之比等于其高之比,高相等的三角形的面积之比等于其底之比。
8、三角形的任意一条中线将这个三角形分为两个面积相等的三角形。
9、等腰三角形顶角的角平分线和底边上的高、底边上的中线在一条直线上(三线合一)。
初中几何公式:线
1 同角或等角的余角相等
2 过一点有且只有一条直线和已知直线垂直
3 过两点有且只有一条直线
4 两点之间线段最短
5 同角或等角的补角相等
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
初中几何公式:角
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
初中几何公式:三角形
15 定理 三角形两边的和大于第三边
16 推论 三角形两边的差小于第三边
17 三角形内角和定理 三角形三个内角的和等于180°
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22边角边公理 有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理 有两角和它们的夹边对应相等的两个三角形全等
24 推论 有两角和其中一角的对边对应相等的两个三角形全等
25 边边边公理 有三边对应相等的两个三角形全等
三角形推荐访问