出国留学网二次函数知识点

出国留学网专题频道二次函数知识点栏目,提供与二次函数知识点相关的所有资讯,希望我们所做的能让您感到满意!

初中数学二次函数知识点总结

 

  初中数学是迈向高等数学的重要一步。所以初中的数学的基础一定要打好,为了帮助同学们更好的学习知识点。下面是由出国留学网小编为大家整理的“初中数学二次函数知识点总结”,仅供参考,欢迎大家阅读。

  初中数学二次函数知识点总结

  I.定义与定义表达式

  一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c

  (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。

  二次函数表达式的右边通常为二次三项式。

  II.二次函数的三种表达式

  一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

  顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]

  交点式:y=a(x-x₁)(x-x₂)[仅限于与x轴有交点A(x₁,0)和B(x₂,0)的抛物线]

  注:在3种形式的互相转化中,有如下关系:

  h=-b/2a k=(4ac-b^2)/4a x₁,x₂=(-b±√b^2-4ac)/2a

  III.二次函数的图像

  在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。

  IV.抛物线的性质

  1.抛物线是轴对称图形。对称轴为直线x=-b/2a。

  对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

  2.抛物线有一个顶点P,坐标为:P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。

  3.二次项系数a决定抛物线的开口方向和大小。

  当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。

  4.一次项系数b和二次项系数a共同决定对称轴的位置。

  当a与b同号时(即ab>0),对称轴在y轴左;

  当a与b异号时(即ab<0),对称轴在y轴右。

  5.常数项c决定抛物线与y轴交点。

  抛物线与y轴交于(0,c)

  6.抛物线与x轴交点个数

  Δ=b^2-4ac>0时,抛物线与x轴有2个交点。

  Δ=b^2-4ac=0时,抛物线与x轴有1个交点。

  Δ=b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)

  V.二次函数与一元二次方程

  特别地,二次函数(以下称函数)y=ax^2+bx+c,

  当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax^2+bx+c=0

  此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。

  1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:

  当...

初三数学二次函数知识点有哪些

 

  初三数学二级函数有哪些知识点呢?想要了解的小伙伴,赶紧来瞧瞧吧!下面由出国留学网小编为你精心准备了“初三数学二次函数知识点有哪些”,本文仅供参考,持续关注本站将可以持续获取更多的资讯!

  初三数学二次函数知识点有哪些

  二次函数介绍

  二次函数的基本表示形式为y=ax²+bx+c(a≠0)二次函数最高次必须为二次,二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。它的定义是一个二次多项式(或单项式)。

  如果令y值等于零,则可得一个二次方程。该方程的解称为方程的根或函数的零点。

  二次函数表达式是什么

  (一)顶点式

  y=a(x-h)²+k(a≠0,a、h、k为常数),顶点坐标为(h,k),对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax²的图像相同,当x=h时,y最大(小)值=k。

  (二)交点式

  y=a(x-x₁)(x-x₂)[仅限于与x轴即y=0有交点时的抛物线,即b²-4ac>0]

  函数与图像交于(x₁,0)和(x₂,0)

  (三)一般式

  y=aX²+bX+c=0(a≠0)(a、b、c是常数)

  二次函数图像的对称关系

  (一)对于一般式:

  ①y=ax2+bx+c与y=ax2-bx+c两图像关于y轴对称。

  ②y=ax2+bx+c与y=-ax2-bx-c两图像关于x轴对称。

  ③y=ax2+bx+c与y=-ax2-bx+c-b2/2a关于顶点对称。

  ④y=ax2+bx+c与y=-ax2+bx-c关于原点中心对称。(即绕原点旋转180度后得到的图形)。

  (二)对于顶点式:

  ①y=a(x-h)2+k与y=a(x+h)2+k两图像关于y轴对称,即顶点(h,k)和(-h,k)关于y轴对称,横坐标相反、纵坐标相同。

  ②y=a(x-h)2+k与y=-a(x-h)2-k两图像关于x轴对称,即顶点(h,k)和(h,-k)关于x轴对称,横坐标相同、纵坐标相反。

  ③y=a(x-h)2+k与y=-a(x-h)2+k关于顶点对称,即顶点(h,k)和(h,k)相同,开口方向相反。

  ④y=a(x-h)2+k与y=-a(x+h)2-k关于原点对称,即顶点(h,k)和(-h,-k)关于原点对称,横坐标、纵坐标都相反。

  求二次函数解析式的方法

  (一)条件为已知抛物线过三个已知点,用一般式:y=ax²+bx+c,分别代入成为一个三元一次方程组,解得a、b、c的值,从而得到解析式。

  (二)已知顶点坐标及另外一点,用顶点式:y=a(x-h)²+k,点坐标代入后,成为关于a的一元一次方程,得a的值,从而得到解析式。

  (三)已知抛物线过三个点中,其中两点在X轴上,可用交点式(两根式):y=a(x-x₁)(x-x₂),第三点坐标代入求a,得抛物线解析式。

  二次函数的性质

  (一)二次函数的图像是...

二次函数知识点有哪些?

 

  二次函数的定义和定义表达式是什么,二次函数的概念又是什么呢?正在备考的考生看过来,下面由出国留学网小编为你精心准备了“二次函数知识点有哪些?”,持续关注本站将可以持续获取更多的考试资讯!

  定义与定义表达式

  一般地,自变量x和因变量y之间存在如下关系:

  y=ax2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。),则称y为x的二次函数,二次函数表达式的右边通常为二次三项式。

  二次函数的三种表达式

  一般式:y=ax2+bx+c(a,b,c为常数,a≠0)

  顶点式:y=a(x-h)2+k,[抛物线的顶点P(h,k)]

  交点式:y=a(x-x1)(x-x2),[仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线]

  任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k

  抛物线的顶点坐标是(h,k),h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点上。

  二次函数知识点,包括二次函数的定义表达式,以及二次函数的图像以及交点情况的分析和二次函数的性质。

  二次函数概念

  1.二次函数的概念:一般地,形如 ( 是常数, )的函数,叫做二次函数. 这里需要强调:和一元二次方程类似,二次项系数 ,而 可以为零.二次函数的定义域是全体实数.

  二次函数的结构特征

  ⑴ 等号左边是函数,右边是关于自变量 的二次式, 的最高次数是2.

  ⑵ 是常数, 是二次项系数, 是一次项系数, 是常数项.

...