出国留学网专题频道高中数学解题方法栏目,提供与高中数学解题方法相关的所有资讯,希望我们所做的能让您感到满意!
高中数学解题方法与技巧典例分析怎么样,同学们清楚吗,不清楚的话,快来小编这里瞧瞧。下面是由出国留学网小编为大家整理的“高中数学解题方法与技巧典例分析怎么样”,仅供参考,欢迎大家阅读。
构建数学整体
数学学习需要高中生具备整体思维,对现有条件等知识进行关联,建立起相关概念和数学知识的密切联系,才能灵活地对不同类型数学问题进行解答,最终将所学知识应用到实际数学问题解决过程中。构建数学是一个长期的过程,需要不断对已经掌握的旧有数学知识不断理解和深化,才能形成整体数学意识,这样在解题时才能避免仅关注某一个条件,而不能建立条件之间的联系。从我班实际情况来看,有些同学解题时,错误地认为原有数学知识是不可能解答新数学问题的,因此面对之前没有见过的数学问题,往往不知道从何处下手。
很多数学问题看似“新类型”,其实考察的知识点都是之前学习过的,需要我们整体看待这些问题,将题目中现有的条件及隐含的元素积极联系,以提高解题效率。例如,我遇到过一个三角函数题,计算出22.5度的三角函数值,惯性思维下,我按照固有思路计算,但是发现计算起来非常麻烦,于是我转换角度,借用44.5度的三角函数值,并利用所学数学定理,即余弦定理、正弦定理,更为简便、快速地计算出题目所要求的22.5度的三角函数值。解题后我进行了答题反思,发现使用数学整体思路解题比单一元素解题更为便捷高效,不管习题类型如何变化,要记住“万变不离其宗”,应当想办法运用已有知识联系题目,最终可能获得意想不到的收获。
巧妙加减同一个量
求解积分等类型数学习题时,经常会使用“加减同一个量”“拼凑”出想要的公式模型或者定理,这样一来可以十分巧妙地解答出高中数学相关习题。比如,求解积分函数时,应用“加减同一个量”的数学解题方法,可以在被积函数中需要时首先故意加上或者人为减去一个相等的量,为了确保最终答案正确性,还需要在给出答案之前,相应地减去或者加上这一个“相等的量”,这样才算解题完毕,避免答案错误。
使用“加减同一个量”的数学解题方法解数学积分类习题时,看上去貌似增加了解题难度,使计算步骤更为烦琐和复杂,但其实是一个“重新拆补”、“重新构造”的过程,目的是拼凑出所需的公式,让计算更加完整,更有规律可循,实质上是对题目的一种“合理变形”,最终降低了数学问题解题难度,提高了答题效率,使整个过程变得更加有趣,进一步提高了作答准确度。但是运用“加减同一个量”的数学解题方法解题时,一定要认真和细心,否则很可能出现计算疏忽,尤其是一定别忘了在减去一个量的同时,再加上同一个量,这样才能保证又快又好地完成解题过程。
反面假设论证原命题
在高中数学解题时,我们经常会遇到一些难缠习题,从题目已知条件来看,难以运用所学数学原理和知识等通过正常思维或者惯常思路破解这些难题,这个时候,可以使用“反面假设法”进行“逆向思维”,从题目的要求和所要求答案入手,假设题目条件成立,再一步一步逆推,最终理顺解题思路。
使用“反面假设法”解题时,应当清楚正确地分析出该题目现有的命题条件及问题的结论,然后根据这些条件进行逆向合理假设,再根据假设完成相应的逻辑思维,进行命题推理,这样一来得出的结论往往会跟命题相悖,此时,只需要对该矛盾出现的缘由进行思考和分析,...
高中数学解题方法同学们有去总结过吗,没有的话,快来小编这里瞧瞧。下面是由出国留学网小编为大家整理的“高中数学解题方法总结”,仅供参考,欢迎大家阅读。
1、配方法
把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法
换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理
一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
5、待定系数法
在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。
6、构造法
在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
7、反证法
反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。
反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;...
高中数学解题方法有哪些呢?同学们清楚吗,不清楚的话,快来小编这里瞧瞧。下面是由出国留学网小编为大家整理的“高中数学解题方法有哪些呢”,仅供参考,欢迎大家阅读。
高中数学解题方法有哪些呢
1、不等式、方程或函数的题型,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。
2、在研究含有参数的初等函数的时候应该抓住无论参数怎么变化一些性质都不变的特点。如函数过的定点、二次函数的对称轴等。
3、在求零点的函数中出现超越式,优先选择数形结合的思想方法。
4、恒成立问题中,可以转化成最值问题或者二次函数的恒成立可以利用二次函数的图像性质来解决,灵活使用函数闭区间上的最值,分类讨论的思想(在分类讨论中应注意不重复不遗漏)。
5、选择与填空中出现不等式的题,应优先选特殊值法。
6、在利用距离的几何意义求最值得问题中,应首先考虑两点之间线段最短,常用次结论来求距离和的最小值;三角形的两边之差小于第三边,常用此结论来求距离差的最大值。
拓展阅读:高中数学函数解题技巧
1、注重“类比”思想
不同的事物往往具有一些相同或相似的属性,人们正是利用相似事物具有的这种属性,通过对一事物的认识来认识与它相似的另一事物,这种认识事物的思维方法就是类比法。初中学习的正比例函数、一次函数、反比例函数、二次函数在概念的得来、图象性质的研究、及基本解题方法上都有着本质上的相似。因此阳光学习网刘老师指出,采用类比的方法不但省时、省力,还有助于学生的理解和应用。是一种既经济又实效的教学方法。
2、注重“数形结合”思想
数形结合的思想方法是初中数学中一种重要的思想方法。数学是研究现实世界数量关系和空间形式的科学。而数形结合就是通过数与形之间的对应和转化来解决数学问题。它包含以形助数和以数解形两个方面,利用它可使复杂问题简单化,抽象问题具体化,它兼有数的严谨与形的直观之长。
函数的三种表示方法:解析法、列表法、图象法本身就体现着函数的“数形结合”。函数图象就是将变化抽象的函数“拍照”下来研究的有效工具,函数教学离不开函数图象的研究。
3、注重自变量的取值范围
自变量的取值范围,是解函数问题的难点和考点。正确求出自变量取值范围,正确理解问题,并化归为解不等式或不等式组。这需要学生掌握函数的思想,不等式的实际应用,全面考虑取值的实际意义。
4、注重实际应用问题
学习函数的主要目的之一就是在复杂的实际生活中建立有效的函数模型,利用函数的知识解决问题。这也是新课标所倡导的学习,因此新教材大力倡导函数与实际的应用。
...05-13
高中数学解题方法技巧同学们总结过吗,没有的话,快来小编这里瞧瞧。下面是由出国留学网小编为大家整理的“高中数学解题方法技巧大全”,仅供参考,欢迎大家阅读。
解题方法一
以退求进,立足特殊
发散一般对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件,等等。总之,退到一个你能够解决的程度上,通过对“特殊”的思考与解决,启发思维,达到对“一般”的解决。
逆向思考,正难则反
对一个问题正面思考发生思维受阻时,用逆向思维的方法去探求新的解题途径,往往能得到突破性的进展,如果顺向推有困难就逆推,直接证有困难就反证,如用分析法,从肯定结论或中间步骤入手,找充分条件;用反证法,从否定结论入手找必要条件。
面对难题,讲究方法
对一个疑难问题,确实啃不动时,一个明智的解题方法是:将它划分为一个个子问题或一系列的步骤,先解决问题的一部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步,每进行一步就可得到这一步的分数。如从最初的把文字语言译成符号语言,把条件和目标译成数学表达式,设应用题的未知数,设轨迹题的动点坐标,依题意正确画出图形等,都能得分。还有象完成数学归纳法的第一步,分类讨论,反证法的简单情形等,都能得分。而且可望在上述处理中,从感性到理性,从特殊到一般,从局部到整体,产生顿悟,形成思路,获得解题成功。解题过程卡在一中间环节上时,可以承认中间结论,往下推,看能否得到正确结论,如得不出,说明此途径不对,立即否得到正确结论,如得不出,说明此途径不对,立即改变方向,寻找它途;如能得到预期结论,就再回头集中力量攻克这一过渡环节。若因时间限制,中间结论来不及得到证实,就只好跳过这一步,写出后继各步,一直做到底;另外,若题目有两问,第一问做不上,可以第一问为“已知”,完成第二问,这都叫跳步解答。也许后来由于解题的正迁移对中间步骤想起来了,或在时间允许的情况下,经努力而攻下了中间难点,可在相应题尾补上。
解题方法二
学会画图
画图是一个翻译的过程,把解题时的抽象思维,变成了形象思维,从而降低了解题难度。有些题目,只要分析图一画出来,其中的关系就变得一目了然。尤其是对于几何题,包括解析几何题,若不会画图,有时简直是无从下手。因此,牢记各种题型的基本作图方法,牢记各种函数的图像和意义及演变过程和条件,对于提高解题速度非常重要。
先易后难,逐步增加习题的难度
人们认识事物的过程都是从简单到复杂。简单的问题解多了,从而使概念清晰了,对公式、定理以及解题步骤熟悉了,解题时就会形成跳跃性思维,解题的速度就会大大提高。我们在学习时,应根据自己的能力,先去解那些看似简单,却很重要的习题,以不断提高解题速度和解题能力。随着速度和能力的提高,再逐渐增加难度,就会达到事半功倍的效果。
限时答题,先提速后纠正错误
很多同学做题慢的一个重要原因就是平时做作业习惯了拖延时间,导致形成了一个不太好的解题习惯。所以,提高解题速度就要先解决“拖延症”。比较有效的方式是限时答题,例如在做数学作业时,给自己限时,先不管正确率,首先保证在规定时间内完成数学作业,然后...
高中数学是高等数学的初级阶段,有些同学面对一些题型总是解答不出题目,那么高中数学的解题方法有哪些呢?这是他们想问的问题。下面是由出国留学网小编为大家整理的“高中数学解题方法有哪些”,仅供参考,欢迎大家阅读。
高中数学解题方法有哪些
1、不等式、方程或函数的题型,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。
2、在研究含有参数的初等函数的时候应该抓住无论参数怎么变化一些性质都不变的特点。如函数过的定点、二次函数的对称轴等。
3、在求零点的函数中出现超越式,优先选择数形结合的思想方法。
4、恒成立问题中,可以转化成最值问题或者二次函数的恒成立可以利用二次函数的图像性质来解决,灵活使用函数闭区间上的最值,分类讨论的思想(在分类讨论中应注意不重复不遗漏)。
5、选择与填空中出现不等式的题,应优先选特殊值法。
6、在利用距离的几何意义求最值得问题中,应首先考虑两点之间线段最短,常用次结论来求距离和的最小值;三角形的两边之差小于第三边,常用此结论来求距离差的最大值。
拓展阅读:如何提高高中数学成绩
提高高中数学成绩的方法有很多,比如:
1、及时预习:预习第二天要讲知识、章节和内容,可及时跟上老师思路,理解消化所讲内容,不预习很难跟上老师思路,从而会导致分神和分心,形成恶性循环,导致成绩差;
2、上课认真听讲:重点、难点、高考必考点都很重要;
3、背熟课本:背熟课本上的知识点,将知识点应用于数学上;
4、熟读例题:课本上的例题是经典,练习题都是根据例题编写;
5、及时复习:不及时复习,会导致知识点的遗漏、遗忘。
...
数学解题的思维过程是指从理解问题开始,经过探索思路,转换问题直至解决问题,进行回顾的全过程的思维活动。以下是出国留学网小编整理的高中数学解题方法,欢迎参考,更多详细内容请点击出国留学网查看。
数学解题的思维过程
数学解题的思维过程是指从理解问题开始,经过探索思路,转换问题直至解决问题,进行回顾的全过程的思维活动。
对于数学解题思维过程,G . 波利亚提出了四个阶段*(见附录),即弄清问题、拟定计划、实现计划和回顾。这四个阶段思维过程的实质,可以用下列八个字加以概括:理解、转换、实施、反思。
第一阶段:理解问题是解题思维活动的开始。
第二阶段:转换问题是解题思维活动的核心,是探索解题方向和途径的积极的尝试发现过程,是思维策略的选择和调整过程。
第三阶段:计划实施是解决问题过程的实现,它包含着一系列基础知识和基本技能的灵活运用和思维过程的具体表达,是解题思维活动的重要组成部分。
第四阶段:反思问题往往容易为人们所忽视,它是发展数学思维的一个重要方面,是一个思维活动过程的结束包含另一个新的思维活动过程的开始。
数学解题的技巧
为了使回想、联想、猜想的方向更明确,思路更加活泼,进一步提高探索的成效,我们必须掌握一些解题的策略。
一切解题的策略的基本出发点在于“变换”,即把面临的问题转化为一道或几道易于解答的新题,以通过对新题的考察,发现原题的解题思路,最终达到解决原题的目的。
基于这样的认识,常用的解题策略有:熟悉化、简单化、直观化、特殊化、一般化、整体化、间接化等。
一、 熟悉化策略所谓熟悉化策略,就是当我们面临的是一道以前没有接触过的陌生题目时,要设法把它化为曾经解过的或比较熟悉的题目,以便充分利用已有的知识、经验或解题模式,顺利地解出原题。
一般说来,对于题目的熟悉程度,取决于对题目自身结构的认识和理解。从结构上来分析,任何一道解答题,都包含条件和结论(或问题)两个方面。因此,要把陌生题转化为熟悉题,可以在变换题目的条件、结论(或问题)以及它们的联系方式上多下功夫。
常用的途径有:
(一)、充分联想回忆基本知识和题型:
按照波利亚的观点,在解决问题之前,我们应充分联想和回忆与原有问题相同或相似的知识点和题型,充分利用相似问题中的方式、方法和结论,从而解决现有的问题。
(二)、全方位、多角度分析题意:
对于同一道数学题,常常可以不同的侧面、不同的角度去认识。因此,根据自己的知识和经验,适时调整分析问题的视角,有助于更好地把握题意,找到自己熟悉的解题方向。
(三)恰当构造辅助元素:
数学中,同一素材的题目,常常可以有不同的表现形式;条件与结论(或问题)之间,也存在着多种联系方式。因此,恰当构造辅助元素,有助于改变题目的形式,沟通条件与结论(或条件与问题)的内在联系,把陌生题转化为熟悉题。
数学解题中,构造的辅助元素是多种多样的,常见的有构造图形(点、线、面、体),构造算法,构造多项式,构造方程(组),构造坐标系,构造数列,构造行列式,构造等价性命题,构造反例,构造数学模型...
11-17
方法1:调理大脑思绪,提前进入数学情境
考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。
方法2:沉着应战,确保旗开得胜,以利振奋精神
良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。
方法3:“内紧外松”,集中注意,消除焦虑怯场
集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。
方法4:一“慢”一“快”,相得益彰
有些考生只知道考场上一味地要快,结果题意未清,条件未全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,导致失败。应该说,审题要慢,解答要快。审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据。而思路一旦形成,则可尽量快速完成。
方法5:“六先六后”,因人因卷制宜
在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了,这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行“六先六后”的战术原则。
1.先易后难
就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。
2.先熟后生。
通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。这样,在拿下熟题的同时,可以使思维流畅、超常发挥,达到拿下中高档题目的目的。
3.先同后异。
先做同科同类型的题目,思考比较集中,知识和方法的沟通比较容易,有利于提高单位时间的效益。高考题一般...
高中数学解题方法推荐访问