出国留学网二元一次方程的解法

出国留学网专题频道二元一次方程的解法栏目,提供与二元一次方程的解法相关的所有资讯,希望我们所做的能让您感到满意! 如果一个方程含有两个未知数,并且所含未知项的次数都为1次,那么这个整式方程就叫做二元一次方程,有无数个解,若加条件限定有有限个解。二元一次方程的一般形式:ax+by+c=0其中a、b不为零,这就是二元一次方程的定义。二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。二元一次方程组定义:方程组中有两个未知数,含有每个未知数的项的次数都是1,并且一共有两个方程。二元一次方程组的解:两个二元一次方程的公共解,叫做二元一次方程组的解。二元一次方程组的解,一般有一个解,有时没有解,有时有无数个解,如一次函数中的平行。二元一次方程组解法,一般是将二元一次方程消元,变成一元一次方程求解。有两种消元方式:1.加减消元法:将方程组中的两个等式用相加或者是相减的方法,抵消其中一个未知数,从而达到消元的目的,将方程组中的未知数个数由多化少,逐一解决。2.代入消元法:通过“代入”消去一个未知数,将方程组转化为一元一次方程来解,这种解法叫做代入消元法,简称代入法。重点难点本节重点内容是二元一次方程组的概念以及如何用代入法和加减法解二元一次方程组,难点是根据方程的具体形式选择合适的解法。

二元一次方程的解法有哪些

 

  在解二元一次方程中,很多同学只知道一种甚至不知道该如何解开二元一次方程,那它有哪些方法呢,以下是由出国留学网编辑为大家整理的“二元一次方程的解法有哪些”,仅供参考,欢迎大家阅读。

  二元一次方程的解法

  代入消元法

  (1)概念:将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解. 这种解方程组的方法叫做代入消元法,简称代入法.[3]

  (2)代入法解二元一次方程组的步骤

  ①选取一个系数较简单的二元一次方程变形,用含有一个未知数的代数式表示另一个未知数;

  ②将变形后的方程代入另一个方程中,消去一个未知数,得到一个一元一次方程(在代入时,要注意不能代入原方程,只能代入另一个没有变形的方程中,以达到消元的目的. );

  ③解这个一元一次方程,求出未知数的值;

  ④将求得的未知数的值代入①中变形后的方程中,

  求出另一个未知数的值;

  ⑤用“{”联立两个未知数的值,就是方程组的解;

  ⑥最后检验(代入原方程组中进行检验,方程是否满足左边=右边)。

  加减消元法

  (1)概念:当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法,简称加减法.[4]

  (2)加减法解二元一次方程组的步骤

  ①利用等式的基本性质,将原方程组中某个未知数的系数化成相等或相反数的形式;

  ②再利用等式的基本性质将变形后的两个方程相加或相减,消去一个未知数,得到一个一元一次方程(一定要将方程的两边都乘以同一个数,切忌只乘以一边,然后若未知数系数相等则用减法,若未知数系数互为相反数,则用加法);

  ③解这个一元一次方程,求出未知数的值;

  ④将求得的未知数的值代入原方程组中的任何一个方程中,

  求出另一个未知数的值;

  ⑤用“{”联立两个未知数的值,就是方程组的解

  ⑥最后检验求得的结果是否正确(代入原方程组中进行检验,方程是否满足左边=右边)。

  拓展阅读:二元一次方程定义

  (1)概念:含有两个未知数,并且含有未知数的项的次数都是1的方程,叫做二元一次方程.

  你能区分这些方程吗?5x+3y=75;3x+1=8x;+y=2;2xy=9.

  对二元一次方程概念的理解应注意以下几点:

  ①等号两边的代数式是整式;

  ②在方程中“元”是指未知数,二元是指方程中含有两个未知数;

  ③未知数的项的次数都是1,实际上是指方程中最高次项的次数为1,在此可与多项式的次数进行比较理解,切不可理解为两个未知数的次数都是1。

  (2)二元一次方程的解

  使二元一次方程两边相等的一组未知数的值,叫做二元一次方程的一个解。

  对二元一次方程的解的理解应注意以下几点:

  ①一般地,一个二元...

中考数学考点精讲:二元一次方程的解法

 

  出国留学网为您整理“中考数学考点精讲:二元一次方程的解法”,欢迎阅读参考,更多有关内容请继续关注本网站中考栏目。

  中考数学考点精讲:二元一次方程的解法

  1、直接开平方法:

  直接开平方法就是用直接开平方求解二元一次方程的方法。用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±根号下n+m.

  例1.解方程(1)(3x+1)2=7(2)9x2-24x+16=11

  分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以此方程也可用直接开平方法解。

  (1)解:(3x+1)2=7×

  ∴(3x+1)2=5

  ∴3x+1=±(注意不要丢解)

  ∴x=

  ∴原方程的解为x1=,x2=

  (2)解:9x2-24x+16=11

  ∴(3x-4)2=11

  ∴3x-4=±

  ∴x=

  ∴原方程的解为x1=,x2=

  2.配方法:

  用配方法解方程ax2+bx+c=0(a≠0)

  先将常数c移到方程右边:ax2+bx=-c

  将二次项系数化为1:x2+x=-

  方程两边分别加上一次项系数的一半的平方:x2+x+()2=-+()2

  方程左边成为一个完全平方式:(x+)2=

  当b^2-4ac≥0时,x+=±

  ∴x=(这就是求根公式)  例2.用配方法解方程3x^2-4x-2=0(注:X^2是X的平方)

  解:将常数项移到方程右边3x^2-4x=2

  将二次项系数化为1:x2-x=

  方程两边都加上一次项系数一半的平方:x2-x+()2=+()2

  配方:(x-)2=

  直接开平方得:x-=±

  ∴x=

  ∴原方程的解为x1=,x2=.

  3.公式法:

  把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a,b,c的值代入求根公式x=[-b±(b^2-4ac)^(1/2)]/(2a),(b^2-4ac≥0)就可得到方程的根。

  例3.用公式法解方程2x2-8x=-5

  解:将方程化为一般形式:2x2-8x+5=0

  ∴a=2,b=-8,c=5

  b^2-4ac=(-8)2-4×2×5=64-40=24>0

  ∴x=[(-b±(b^2-4ac)^(1/2)]/(2a)

  ∴原方程的解为x1=,x2=.

  4.因式分解法:

  把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。这种解一元二次方程的方法叫做因式分解法。

  例4.用因式分解法解下...

2018中考数学代数:消元法解二元一次方程组

 

  出国留学网中考网为大家提供2018中考数学代数:消元法解二元一次方程组,更多中考数学复习资料请关注我们网站的更新!

  2018中考数学代数:消元法解二元一次方程组

  1.由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做代入消元法,简称代入法.

  2.用代入消元法解二元一次方程组的步骤:

  (1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来.

  (2)把(1)中所得的方程代入另一个方程,消去一个未知数.

  (3)解所得到的一元一次方程,求得一个未知数的值.

  (4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解.

  注意:⑴运用代入法时,将一个方程变形后,必须代入另一个方程,否则就会得出“0=0”的形式,求不出未知数的值.

  ⑵当方程组中有一个方程的一个未知数的系数是1或-1时,用代入法较简便.

  3.两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。

  用加减消元法解二元一次方程组的基本思路仍然是“消元”.

  4.用加减法解二元一次方程组的一般步骤:

  第一步:在所解的方程组中的两个方程,如果某个未知数的系数互为相反数,可以把这两个方程的两边分别相加,消去这个未知数;如果未知数的系数相等,可以直接把两个方程的两边相减,消去这个未知数.

  第二步:如果方程组中不存在某个未知数的系数绝对值相等,那么应选出一组系数(选最小公倍数较小的一组系数),求出它们的最小公倍数(如果一个系数是另一个系数的整数倍,该系数即为最小公倍数),然后将原方程组变形,使新方程组的这组系数的绝对值相等(都等于原系数的最小公倍数),再加减消元.

  第三步:对于较复杂的二元一次方程组,应先化简(去分母,去括号,合并同类项等),通常要把每个方程整理成含未知数的项在方程的左边,常数项在方程的右边的形式,再作如上加减消元的考虑.

  注意:⑴当两个方程中同一未知数的系数的绝对值相等或成整数倍时,用加减法较简便.

  ⑵如果所给(列)方程组较复杂,不易观察,就先变形(去分母、去括号、移项、合并等),再判断用哪种方法消元好.

  5.列方程组解简单的实际问题.解实际问题的关键在于理解题意,找出数量之间的相等关系,这里的相等关系应是两个或三个,正确的列出一个(或几个)方程,再组成方程组.

  小编精心为您推荐:

  

中考数学考前复习指导:20字诀