出国留学网专题频道公务员行测特值法栏目,提供与公务员行测特值法相关的所有资讯,希望我们所做的能让您感到满意!
想要备考好公务员行测考试,掌握一些答题技巧非常的重要,下面由出国留学网小编为你精心准备了“带你认识行测数量关系中的特值法”,持续关注本站将可以持续获取更多的考试资讯!
对于要准备参加国考的小伙伴们来说,数量关系是行测试卷中很重要的一部分,而数量关系作为行测考试内容五大部分之一,对于不同的题型其解题方法也可能会有多种,接下来小编就针对数量关系中特值法常见的几种设法做一简要概括,希望对广大备考的考生能有所帮助。
特值法的应用整体上要把握所设的值要尽量小且尽量整,具体技巧有以下几种情况:
一、设相关量的的最小公倍数(在M=A×B的关系式中设M为A或B的最小公倍数)
【例1】植树节时,某班学生平均植树6颗,单独女生完成,每人应植树15颗,那么单独男生完成,每人植树 ( )颗。
A.8 B.9 C.10 D.11
【答案】C。解析:从已知条件可知,植树的总数=每个人植树数量×人数,存在M=A×B的关系,此时我们可以直接设植树的数量是6和15的最小公倍数30,那么可求得全班人数为5,女生人数为2,那么男生人数为5-2=3人,因此平均每个男生植树为30÷3=10棵,答案选择C选项。
二、设最简比为特值
【例2】某市有甲、乙、丙三个工程队,工作效率比为3:4:5。甲队单独完成A工程需要25天,丙队单独完成B工程需要9天。若三个工程队合作,完成这两项工程需要( )天
A.6 B.7 C.8 D.10
【答案】D。解析:题中已知了甲、乙、丙的效率比,直接设三者效率比分别为3、4、5,由此可求A工程的工作总量为25×3=75,B工程的工作总量为5×9=45,即总的工作量为75+45=120,甲、乙、丙合作完成A、B两个工程所需时间为120÷(3+4+5)=10天,答案选择D选项。
接下来,我们再来练习一道题目。
【例3】甲、乙两支工程队负责高校自来水管道改造工作,如果由甲队或乙队单独施工,
预计分别需要20和30天完成。实际工作中一开始由甲队单独施工,10天后乙队加入。
问:工程从开始到结束共用时多少天?
A.15 B.16 C.18 D.25
【答案】B。解析:题目中已知甲乙两队单独施工分别需要20天和30天,因此我们就可以假设工作总量为时间的最小公倍数60,根据工作总量和时间我们可以求出甲乙的效率分别为3和2。而在实际工作中相当于是甲乙两人一起完成了所有的工作,就意味着工作总量就等于甲完成的加上乙完成的,即60=3t+2(t-10),解得t=16,即甲总共工作的时间是16天,而甲是从头工作到结束,所以说整个工程的用时和甲的时间一致,均为16天,答案选择B选项。
工程问题在国考中都属于常考知识点,相对来说,该类题目整体难度适中,只要掌握对应公式及相关技巧,基本都可迎刃而解。今天小编带大家一起来看一下工程问题中最基本的考点——普通工程。
概念
公务员行测特值法推荐访问