出国留学网专题频道内角课件栏目,提供与内角课件相关的所有资讯,希望我们所做的能让您感到满意!
出国留学网编辑已经为您挑选了以下有价值的资料供您参考:“多边形内角和课件”。每个老师需要在上课前弄好自己的教案课件,没有写的老师就需要抓紧完成了。教案是提高师生互动质量的有效手段。只要我的回答对你有所帮助请不要忘记将其收藏起来!
这三条线段叫做这个三角形的边;(AB、BC、CA)
相邻两条边的公共端点叫做这个三角形的顶点;(A、B、C)
相邻两条边所夹的角叫做这个三角形的内角,又叫做这个三角形的角(∠A、∠B、∠C)
三角形的内角的邻补角叫做这个三角形的外角
2.三角形的表示为△ABC
3.三角形的三条重要线段:高、中线、内角平分线(三条高所在的直线都交于一点,这个点叫
做三角形的垂心;三条中线交于一点,这个点叫做三角形的重心;
三条内角平分线交于一点,这个点叫做三角形的内心)
4.三角形内角和定理以及相关的结论
(1)三角形的内角和为180°
(2)直角三角形的两个锐角互余
(3)三角形的外角和为360°
(4)三角形的一个外角等于与它不相邻的两个内角的和
(5)三角形的一个外角大于与它不相邻的任何一个内角
5.三角形的三边关系定理
三角形的任意两边之和都大于第三条边;任意两边之差都小于第三条边
6.三角形具有稳定性
7.多边形:由在同一平面内,不在同一直线上的若干条线段首尾顺次连接所围成的封闭图形叫
做多边形
这些线段叫做这个多边形的边;
相邻两条边的公共端点叫做这个多边形的顶点;
相邻两条边所夹的角叫做这个多边形的内角,又叫做这个多边形的角
多边形的内角的邻补角叫做这个多边形的外角
8.对角线:连结多边形不相邻的两个顶点的线段叫做多边形的对角线
由一个顶点出发的对角线有(n-3)条;(n表示边数)
条对角线(n表示边数)
9.多边形的内角和及外角和
(1)多边形的内角和为(n-2).180°(n表示边数)
(2)多边形的外角和为360°
【阶段练习】
一、回答下列各问题
1.什么是三角形?它有哪些元素?通常用什么符号来表示它及三个角所对的边?
2.为什么屋架、桥梁及电杆的支架多采用三角形的形状?
3.如果△ABC的三条边长分别为(12、13、14)及(10、20、30),这样的三角形能成立吗?
为什么?
4.设△ABC的边长分别为a、b、c,那么这三条边的边长须具有什么条件,才能将△ABC画
出来
5.△ABC中有几条角平分线?试画图说明
6.什么是三角形的高?一个三角形有几条高?三角形的高的位置是否一定在形内?为什么?
试画图说明
7.三角形的一条中线把这个三角形分成两部分,这两个部分的面积有什么关系?为什么?
小编用心编写这篇“三角形的内角和课件”堪称是激励人心的文章之一,祝你能从本文中获得收获希望你喜欢。教案课件是老师教学工作的起始环节,也是上好课的先决条件,又到了写教案课件的时候了。教案是提升学生学习质量的重要工具。
三角形的内角和
各位评委老师,大家好,我是XX号考生,我今天说课的题目是《三角形的内角和》。下面我将从教材分析,学情分析,教法,学法,教学过程,及板书设计六个方面展开我的说课。
一》说教材。一切教学设计都基于教材,首先我来说一下教材分析,本节课是人教版八年级上册第11章第二节的内容,本节课研究三角形的内角和定理,它是小学学习的三角形有关知识的拓展,并为以后学习三角形的其他知识奠定了基础,因此本节课的学习是十分重要的。由以上分析,结合新课标的要求,我确定了以下三维教学目标:1.知识与技能目标:掌握三角形内角和定理的证明及简单应用。2.过程与方法目标:通过对三角形内角和定理的探索证明,培养学生的动手操作能力和独立思考的能力。3.情感态度与价值观目标:经历三角形内角和定理的探索过程,增强学习数学的兴趣,初步认识数学与人类的联系,体验数学活动充满着探索与研究。
根据以上对教学目标的分析,我将本节课的教学重点确定为:证明三角形内角和定理。教学难点:三角形内角和定理的应用。
二》说学情:作为一名老师,不仅要对教材进行分析,还要对学生的情况有清晰明了的掌握,这样才能做到因材施教,有的放矢。接下来,我将对学情进行分析:初中学生的思维已由形象思维向抽象思维发展,学生的观察力,记忆力,想象力也有一定的发展,但这一时期的学生活泼好动,记忆力容易分散,并且对知识的概括和应用也有一定的欠缺,这都是我在教学中应考虑的问题。
三》说教法:基于以上对教材和学情的分析,结合本节课的特点,我将采用以下教学方法:在教法上,采用引导发现法和练习法,通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动,多观察,主动参与到整个教学活动中来。在学法上,学生们合作交流,自主学习,这种学习方式,有助于发展学生独立分析和探究的意识,培养学生养成良好的学习习惯。
四》说教学过程:关于本节课的教学过程,我从以下几方面入手:1.情境导入,激发兴趣。
我会问学生:同学们,你们听过内角三兄弟之争的故事吗?有的回答有,有的回答没有,我会说:“那今天我来给大家讲一讲吧。在一个直角三角形的家里住着内角三兄弟,平时他们三兄弟非常团结,可是有一天,老二突然不高兴,发起脾气来,他指着老大说:你凭什么度数最大,我也要和你一样大!“不行啊!老大说,“这是不可能的,否则我们就围不成一个家了。”“为什么呢?”老二很纳闷,同学们,你们知道其中的道理吗?设置悬疑,自然导入三角形内角和的学习,通过这样的设计,可以在一开始就吸引学生的注意力,激发学生的探求欲望。
2.合作交流,探索新知
在这一环节,首先由学生自己在纸上画一个三角形(板书画三角形),并将内角剪下,然后我引导学生 :试着拼一拼,看看会有发展思维的灵活性,创造性。然后,我会设问:从刚才的拼图过程中是不是剪下的内角可以拼成一个平角啊?那这说明什么呢?由学生举手回答:三角形的内角和为180度。为调动学生的积极性,我会对学生的回答给予肯定,然后我会想学生说明这种操作存有误差,需要我们给予证明,接下来由学生分组讨论证明方法,并交...
以下是编辑为您准备的“三角形的内角和课件”相关内容,烦请查看。每位老师在正式上课之前必须精心制作本学期的教学教案课件,以满足不同层次学生的需求。制作有针对性的教学课件对于教学质量的提升有着至关重要的作用。欢迎继续阅读,希望大家能够享受!
【教学内容】:人教版第八册第85页例5及“做一做”和练习十四的第9、10、12题。
【课程标准】:认识三角形,通过观察、操作、了解三角形内角和是180度。
【学情分析】:
学生已经掌握了三角形的概念、分类,熟悉了钝角、锐角、平角这些角的知识。对于三角形的内角和是多少度,学生是不陌生的,因为学生有以前认识角、用量角器量三角板三个角的度数以及三角形的分类的基础,学生也有提前预习的习惯,很多孩子都能回答出三角形的内角和是180度,但是他们却不知道怎样才能得出三角形的内角和是180度。另外,经过三年多的学习,学生们已具备了初步的动手操作能力、主动探究能力以及小组合作的能力。
【学习目标】:
1、结合具体图形能描述出三角形的内角、内角和的含义。
2、在教师的引导下,通过猜测和计算能说出三角形的内角和是180°。
3、在小组合作交流中,通过动手操作,实验、验证、总结三角形的内角和是180°,同时发展动手动脑及分析推理能力。
4、能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。
【评价任务设计】:
1、利用孩子已有经验,通过教师的提问和引导以及学生的直观观察,说出三角形的内角、内角和的含义。达成目标1。
2、在教师的引导下,以游戏的形式学生通过猜测三角形的内角和是多少度,然后通过计算说出三角形的内角和是180°的结论。达成目标2。
3、在小组合作交流中,通折一折、拼一拼和摆一摆的动手操作、实验、验证并归纳总结出三角形的内角和是180°。达成目标3。
4、能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。通过“做一做”和习题第9、10、12题达成目标4和目标3。
【重难点】
教学重点:探索和发现三角形的内角和是180°。
教学难点: 充分发挥学生的主体作用,自主探索和发现三角形的内角和是180°
【教学过程】
一、复习准备。
1、三角形按角的不同可以分成哪几类?
2、一个平角是多少度?1个平角等于几个直角?两个三角板上各个角的度数?
二、探究新知
(一)创设情境,生成问题,认识三角形的内角及内角和
(播放课件)在图形王国中,有一天,三角形家族里为“三角形内角和的大小”爆发了一场激烈的争吵。钝角三角形大声叫着:“我的钝角大,我的内角和一定比你们的内角和大。”锐角三角形也不示弱:“你虽然有一个钝角,可其它两个角都很小。但是我的三个角都不是很小。我的内角和比你大”。直角三角形说:“别争了,三角形的内角和是180°,我们的内角和是一样大的。”
...
老师上课前有教案课件是工作负责的一种表现,当然教案课件里的内容一定要很完善。写好教案,完整课堂教学可达成。需要了解关于“多边形内角和课件”的相关知识不妨来看看这篇文章,供大家参考,希望能帮助到有需要的朋友!
一、素质教育目标
(一)知识教学点
1.使学生把握四边形的有关概念及四边形的内角和外角和定理.
2.了解四边形的不稳定性及它在实际生产,生活中的应用.
(二)能力练习点
1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力.
2.通过推导四边形内角和定理,对学生渗透化归思想.
3.会根据比较简单的条件画出指定的四边形.
4.讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想.
(三)德育渗透点
使学生熟悉到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的爱好.
(四)美育渗透点
通过四边形内角和定理数学,渗透统一美,应用美.
二、学法引导
类比、观察、引导、讲解
三、重点·难点·疑点及解决办法
1.教学重点:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题.
2.教学难点:理解四边形的有关概念中的一些细节问题;四边形不稳定性的理解和应用.
3.疑点及解决办法:四边形的定义中为什么要有“在平面内”,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角.
四、课时安排
2课时
五、教具学具预备
投影仪、胶片、四边形模型、常用画图工具
六、师生互动活动设计
教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料.
第一课时
七、教学步骤
复习引入
在小学里已经对四边形、长方形、平形四边形的有关知识有所了解,但还很肤浅,这一章我们将比较系统地学习各种四边形的性质和判定分析它们之间的关系,并运用有关四边形的知识解决一些新问题.
引入新课
用投影仪打出课前画好的教材中p119的图.
师问:在上图中你能把知道的长方形、正方形、平行四边形、梯形找出来吗?(启发学生找上述图形,最后教师用彩色笔勾出几个图形).
讲解新课
1.四边形的有关概念
结合图形讲解四边形,四边形的边、顶点、角,凸四边形,四边形的对角线(同时学生在书上画出上述概念),讲解这些概念时:
(1)要结合图形.
(2)要与三角形类比.
...内角课件推荐访问