出国留学网专题频道函数知识点总结栏目,提供与函数知识点总结相关的所有资讯,希望我们所做的能让您感到满意!
11-19
一次函数时初二数学中的重点,也是难点。下面是由出国留学网编辑为大家整理的“2022初二数学一次函数知识点总结”,仅供参考,欢迎大家阅读本文。
知识点1 一次函数和正比例函数的概念
若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数.
知识点2 函数的图象
由于两点确定一条直线,一般选取两个特殊点:直线与y轴的交点,直线与x轴的交点。.不必一定选取这两个特殊点.
画正比例函数y=kx的图象时,只要描出点(0,0),(1,k)即可.
知识点3一次函数y=kx+b(k,b为常数,k≠0)的性质
(1)k的正负决定直线的倾斜方向;
①k>0时,y的值随x值的增大而增大;
②k﹤0时,y的值随x值的增大而减小.
(2)|k|大小决定直线的倾斜程度,即|k|越大
①当b>0时,直线与y轴交于正半轴上;
②当b<0时,直线与y轴交于负半轴上;
③当b=0时,直线经过原点,是正比例函数.
(4)由于k,b的符号不同,直线所经过的象限也不同;
①如图所示,当k>0,b>0时,直线经过第一、二、三象限(直线不经过第四象限);
②如图所示,当k>0,b
③如图所示,当k﹤0,b>0时,直线经过第一、二、四象限(直线不经过第三象限);
④如图所示,当k﹤0,b﹤0时,直线经过第二、三、四象限(直线不经过第一象限).
(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的.
知识点4 正比例函数y=kx(k≠0)的性质
(1)正比例函数y=kx的图象必经过原点;
(2)当k>0时,图象经过第一、三象限,y随x的增大而增大;
(3)当k<0时,图象经过第二、四象限,y随x的增大而减小.
知识点5 点P(x0,y0)与直线y=kx+b的图象的关系
(1)如果点P(x0,y0)在直线y=kx+b的图象上,那么x0,y0的值必满足解析式y=kx+b;
(2)如果x0,y0是满足函数解析式的一对对应值,那么以x0,y0为坐标的点P(1,2)必在函数的图象上.
例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l的图象上;点P′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P′(2,1)不在直线y=x+l的图象上.
知识点6 确定正比例函数及一次函数表达式的条件
...
许多同学想了解三角函数,那么三角函数有哪些知识点呢?快来了解一下吧。下面是由出国留学网小编为大家整理的“三角函数知识点归纳总结”,仅供参考,欢迎大家阅读。
一、见“给角求值”问题,运用“新兴”诱导公式
一步到位转换到区间(-90o,90o)的公式.
1.sin(kπ+α)=(-1)ksinα(k∈Z);2. cos(kπ+α)=(-1)kcosα(k∈Z);
3. tan(kπ+α)=(-1)ktanα(k∈Z);4. cot(kπ+α)=(-1)kcotα(k∈Z).
二、见“sinα±cosα”问题,运用三角“八卦图”
1.sinα+cosα>0(或<0)óα的终边在直线y+x=0的上方(或下方);
2. sinα-cosα>0(或<0)óα的终边在直线y-x=0的上方(或下方);
3.|sinα|>|cosα|óα的终边在Ⅱ、Ⅲ的区域内;
4.|sinα|<|cosα|óα的终边在Ⅰ、Ⅳ区域内.
三、见“知1求5”问题,造Rt△,用勾股定理,熟记常用勾股数(3,4,5),(5,12,13),(7,24,25),仍然注意“符号看象限”。
四、见“切割”问题,转换成“弦”的问题。
五、“见齐思弦”=>“化弦为一”:已知tanα,求sinα与cosα的齐次式,有些整式情形还可以视其分母为1,转化为sin2α+cos2α.
六、见“正弦值或角的平方差”形式,启用“平方差”公式:
1.sin(α+β)sin(α-β)= sin2α-sin2β;2. cos(α+β)cos(α-β)= cos2α-sin2β.
七、见“sinα±cosα与sinαcosα”问题,起用平方法则:
(sinα±cosα)2=1±2sinαcosα=1±sin2α,故
1.若sinα+cosα=t,(且t2≤2),则2sinαcosα=t2-1=sin2α;
2.若sinα-cosα=t,(且t2≤2),则2sinαcosα=1-t2=sin2α.
八、见“tanα+tanβ与tanαtanβ”问题,启用变形公式:
tanα+tanβ=tan(α+β)(1-tanαtanβ).思考:tanα-tanβ=???
九、见三角函数“对称”问题,启用图象特征代数关系:(A≠0)
1.函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于过最值点且平行于y轴的直线分别成轴对称;
2.函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于其中间零点分别成中心对称;
3.同样,利用图象也可以得到函数y=Atan(wx+φ)和函数。
y=Acot(wx+φ)的对称性质。
十、见“求最值、值域”问题,启用有界性,或者辅助角公式:
1.|sinx|≤1,|cosx|≤1;
2.(asinx+bcosx)2=(a2+b2)sin2(x+φ)≤(a2+b2);
3.asinx+bcosx=c有解的充要条件是a2+b2≥c2.
十一、见“高次”...
反比例函数是许多同学的难点,那么反比例函数知识点有哪些呢?快来一起了解一下吧。下面是由出国留学网小编为大家整理的“反比例函数知识点总结归纳”,仅供参考,欢迎大家阅读。
反比例函数的表达式
X是自变量,Y是X的函数
y=k/x=k·1/x
xy=k
y=k·x^(-1)(即:y等于x的负一次方,此处X必须为一次方)
y=kx(k为常数且k≠0,x≠0)若y=k/nx此时比例系数为:k/n
函数式中自变量取值的范围
①k≠0;②在一般的情况下,自变量x的'取值范围可以是不等于0的任意实数;③函数y的取值范围也是任意非零实数。 解析式y=k/x其中X是自变量,Y是X的函数,其定义域是不等于0的一切实数
y=k/x=k·1/x xy=k y=k·x^(-1) y=kx(k为常数(k≠0),x不等于0)
反比例函数图象
反比例函数的图像属于以原点为对称中心的中心对称的双曲线,反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K≠0)。
反比例函数中k的几何意义是什么?有哪些应用
过反比例函数y=k/x(k≠0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积S=x的绝对值*y的绝对值=(x*y)的绝对值=|k|
研究函数问题要透视函数的本质特征。反比例函数中,比例系数k有一个很重要的几何意义,那就是:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积S=PM·PN=|y|·|x|=|xy|=|k|。
所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数。从而有k的绝对值。在解有关反比例函数的问题时,若能灵活运用反比例函数中k的几何意义,会给解题带来很多方便。
学习效率之关于难题
很多学生喜欢攻克难题的那种乐趣,于是他们拿出那种不到黄河心不死的精神,有时候耗费一节课时间,攻克一道难题,并且很有成就感。
记住:永远不要花一节课时间去攻克一道难题,这是造成学习效率低下的重大原因。你用一节课攻克一道题,其他题目怎么办,你时间够用吗,更重要的是,你对这道题目,真的收获很大吗。
看完答案,或者听完讲解之后,你必须要花更多的时间来归纳总结:我为何没有解答出这道题,突破口在哪里,我为什么没找到,是哪些关键词汇触发了解题思路,我该如何建立条件反射,以便以后再次看到这些词汇信息,迅速找到相关突破口。记住,这才是最重要的工作。
归纳总结很重要
数学的归纳总结太重要了。顶尖优秀的学生,他们做一道题花5分钟,然后会拿出10~15分钟来做归纳总结,来写解题笔记。
归纳总结,其实就是解题联想,就是书写解题笔记,就是总结“条件反射”。要提高对关键词汇的敏感度,能够通过关键词汇,迅速建立起条件反射...
三角函数是高中数学必学知识点,那么三角函数知识点有哪些呢?快来和小编一起看看吧。下面是由出国留学网小编为大家整理的“三角函数知识点总结归纳”,仅供参考,欢迎大家阅读。
一、见“给角求值”问题,运用“新兴”诱导公式
一步到位转换到区间(-90o,90o)的公式.
1.sin(kπ+α)=(-1)ksinα(k∈Z);2. cos(kπ+α)=(-1)kcosα(k∈Z);
3. tan(kπ+α)=(-1)ktanα(k∈Z);4. cot(kπ+α)=(-1)kcotα(k∈Z).
二、见“sinα±cosα”问题,运用三角“八卦图”
1.sinα+cosα>0(或<0)óα的终边在直线y+x=0的上方(或下方);
2. sinα-cosα>0(或<0)óα的终边在直线y-x=0的上方(或下方);
3.|sinα|>|cosα|óα的终边在Ⅱ、Ⅲ的区域内;
4.|sinα|<|cosα|óα的终边在Ⅰ、Ⅳ区域内.
三、见“知1求5”问题,造Rt△,用勾股定理,熟记常用勾股数(3,4,5),(5,12,13),(7,24,25),仍然注意“符号看象限”。
四、见“切割”问题,转换成“弦”的问题。
五、“见齐思弦”=>“化弦为一”:已知tanα,求sinα与cosα的齐次式,有些整式情形还可以视其分母为1,转化为sin2α+cos2α.
六、见“正弦值或角的平方差”形式,启用“平方差”公式:
1.sin(α+β)sin(α-β)= sin2α-sin2β;2. cos(α+β)cos(α-β)= cos2α-sin2β.
七、见“sinα±cosα与sinαcosα”问题,起用平方法则:
(sinα±cosα)2=1±2sinαcosα=1±sin2α,故
1.若sinα+cosα=t,(且t2≤2),则2sinαcosα=t2-1=sin2α;
2.若sinα-cosα=t,(且t2≤2),则2sinαcosα=1-t2=sin2α.
八、见“tanα+tanβ与tanαtanβ”问题,启用变形公式:
tanα+tanβ=tan(α+β)(1-tanαtanβ).思考:tanα-tanβ=???
九、见三角函数“对称”问题,启用图象特征代数关系:(A≠0)
1.函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于过最值点且平行于y轴的直线分别成轴对称;
2.函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于其中间零点分别成中心对称;
3.同样,利用图象也可以得到函数y=Atan(wx+φ)和函数
y=Acot(wx+φ)的对称性质。
十、见“求最值、值域”问题,启用有界性,或者辅助角公式:
1.|sinx|≤1,|cosx|≤1;
2.(asinx+bcosx)2=(a2+b2)sin2(x+φ)≤(a2+b2);
3.asinx+bcosx=c有解的充要条件是a2+b2≥c2.
十一、...
04-08
初中的知识总量庞大,不是一两天就能总结完的。那么不知道初中锐角三角函数的知识点同学们总结过没。下面是由出国留学网小编为大家整理的“初中锐角三角函数知识点总结”,仅供参考,欢迎大家阅读。
锐角三角函数的定义
锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),(余割csc)都叫做角A的锐角三角函数。
正弦等于对边比斜边
余弦等于邻边比斜边
正切等于对边比邻边
余切等于邻边比对边
正割等于斜边比邻边
余割等于斜边比对边
正切与余切互为倒数
它的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。
由于三角函数的周期性,它并不具有单值函数意义上的反函数。
它有六种基本函数(初等基本表示):
函数名 正弦 余弦 正切 余切 正割 余割
在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为θ,设OP=r,P点的坐标为(x,y)有
正弦函数 sinθ=y/r
余弦函数 cosθ=x/r
正切函数 tanθ=y/x
余切函数 cotθ=x/y
正割函数 secθ=r/x
余割函数 cscθ=r/y
(斜边为r,对边为y,邻边为x。)
以及两个不常用,已趋于被淘汰的函数:
正矢函数 versinθ =1-cosθ
余矢函数 coversθ =1-sinθ
锐角三角函数的性质
1、锐角三角函数定义
锐角角A的正弦,余弦和正切都叫做角A的锐角三角函数
2、互余角的三角函数间的关系。
sin(90°-α)=cosα, cos(90°-α)=sinα,
tan(90°-α)=cotα, cot(90°-α)=tanα.
3、同角三角函数间的关系
平方关系:sin2α+cos2α=1
倒数关系:cotα=(或tanα·cotα=1)
商的关系:tanα= , cotα=.
(这三个关系的证明均可由定义得出)
4、三角函数值
(1)特殊角三角函数值
(2)0°~90°的任意角的三角函数值,查三角函数表。
(3)锐角三角函数值的变化情况
(i)锐角三角函数值都是正值
(ii)当角度在0°~90°间变化时,
正弦值随着角度的增大(或减小)而增大(或减小)
余弦值随着角度的增大(或减小)而减小(或增大)
正切值随着角度的增大(或减小)而增大(或减小)
余切值随着角度的增大(或减小)而减小(或增大)
(iii)当角度在0°≤α≤90°间变化时,
0≤sinα≤1, 1...
04-08
在高中数学中三角函数一直是非常难的课程,它有哪些知识点呢。以下是由出国留学网编辑为大家整理的“高中数学三角函数知识点总结”,仅供参考,欢迎大家阅读。
一、锐角三角函数公式
sin=的对边/斜边
cos=的邻边/斜边
tan=的对边/的邻边
cot=的邻边/的对边
二、倍角公式
Sin2A=2SinA?CosA
Cos2A=CosA2-SinA2=1-2SinA2=2CosA2-1
tan2A=(2tanA)/(1-tanA2)(注:SinA2是sinA的平方sin2(A))
三、三倍角公式
sin3=4sinsin(/3+)sin(/3-)
cos3=4coscos(/3+)cos(/3-)
tan3a=tanatan(/3+a)tan(/3-a)
三倍角公式推导
sin3a
=sin(2a+a)
=sin2acosa+cos2asina
辅助角公式
Asin+Bcos=(A2+B2)(1/2)sin(+t),其中
sint=B/(A2+B2)(1/2)
cost=A/(A2+B2)(1/2)
tant=B/A
Asin+Bcos=(A2+B2)(1/2)cos(-t),tant=A/B
四、降幂公式
sin2()=(1-cos(2))/2=versin(2)/2
cos2()=(1+cos(2))/2=covers(2)/2
tan2()=(1-cos(2))/(1+cos(2))
推导公式
tan+cot=2/sin2
tan-cot=-2cot2
1+cos2=2cos2
1-cos2=2sin2
1+sin=(sin/2+cos/2)2
=2sina(1-sina)+(1-2sina)sina
=3sina-4sina
cos3a
=cos(2a+a)
=cos2acosa-sin2asina
=(2cosa-1)cosa-2(1-sina)cosa
=4cosa-3cosa
sin3a=3sina-4sina
=4sina(3/4-sina)
=4sina[(3/2)-sina]
=4sina(sin60-sina)
=4sina(sin60+sina)(sin60-sina)
=4sina*2sin[(60+a)/2]cos[(60-a)/2]*2sin[(60-a)/2]cos[(60-a)/2]
=4sinasin(60+a)sin(60-a)
cos3...
初中数学是迈向高等数学的重要一步。所以初中的数学的基础一定要打好,为了帮助同学们更好的学习知识点。下面是由出国留学网小编为大家整理的“初中数学二次函数知识点总结”,仅供参考,欢迎大家阅读。
I.定义与定义表达式
一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c
(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式
一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)
顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]
交点式:y=a(x-x₁)(x-x₂)[仅限于与x轴有交点A(x₁,0)和B(x₂,0)的抛物线]
注:在3种形式的互相转化中,有如下关系:
h=-b/2a k=(4ac-b^2)/4a x₁,x₂=(-b±√b^2-4ac)/2a
III.二次函数的图像
在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。
IV.抛物线的性质
1.抛物线是轴对称图形。对称轴为直线x=-b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为:P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
Δ=b^2-4ac>0时,抛物线与x轴有2个交点。
Δ=b^2-4ac=0时,抛物线与x轴有1个交点。
Δ=b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)
V.二次函数与一元二次方程
特别地,二次函数(以下称函数)y=ax^2+bx+c,
当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax^2+bx+c=0
此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。
1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:
当...
函数知识点总结推荐访问