出国留学网专题频道反比例教学反思栏目,提供与反比例教学反思相关的所有资讯,希望我们所做的能让您感到满意!
12-11
引导学生在生活中学习物理知识并应用于生活,教师要重视修炼备课这一教学基本功。教案是教师努力理解,认真思考的结果。对于编写教案还有什么比较疑惑的地方吗?经过收集,出国留学网整理了反比例教学反思,仅供你在工作和学习中参考。
学习用反比例函数解决实际问题,就是引导学生建立数学模型(反比例函数),把实际问题转化为数学问题,学生解决这类问题和解列方程解应用题一样,是学习上面的难点内容,除了要求学生研读题意,理顺数量关系,在学习研究问题时,通过实例使学生搞清基本量的关系,认准常量与变量,熟练等式变形,注意单位统一。
在进行新课学习之前,我就设计了这样的问题,在实际生活中有许多的例子存在着三个基本量满足a=bc的关系,当b为常量时,a与c成正比例,当c为常量时,a与b成正比例,当a为常量时,b与c成反比例,试举出具有a=bc的关系的例子,学生能够举出很多这样的例子,再利用这样的例子加以研究,例如有学生举出路程速度时间满足:路程等于速度乘以时间,速度为常量时,路程与时间成正比例;时间为常量时,路程与速度成正比例;路程为常量时,速度与时间成反比例。在继续研究问题时,学生对于问题中的常量变量及其函数关系就能够比较快地用变化的观念来理解了。布置学生学习第56页的《阅读与思考》:生活中的反比例关系。
课本上有几个不太妥当的地方:
例题2的第二小问用的是具体求出t=5时v=48,再进行问题的回答,学生较难理解,我在处理时,用函数的增减性加以解释,当0<t≤5时,v随t的增大而增大,所以v≥48。或者结合函数的图象加以认识,学生理解起来更为便利。
第54页的三个练习题都应该指明变量的单位,没有单位,函数关系式是不好确定的。
在研究实际问题与反比例函数的关系时,一般的,自变量的取值范围为正数,所以画出的函数图象都是双曲线的一个分支,学生在做练习时没有注意这一点,本课要做说明。由这个作业讲评引出例题1熏药消毒的问题研究,首先提出释放药物之后的反比例函数自变量的取值范围,再关注到空气中的含药量与时间的函数关系是分段函数,进而有条理地求出解析式,第二、三小问是难点,结合图形直观地解读题目,可以借助直尺放置在图形上,使直尺平行于横轴,进行平移,表出直线与图形交点的横坐标的变化和意义,学生对这样的处理有比较好的理解,联系前面学习过的农作物受冻害的题目,这个难点还是可以很好地突破的。
对于课本第58页的两个数学活动,本来是很好的教学探究内容,由于没有在专门的课题活动课上研究,时间仓促,准备不好,走的还是只求结果之路,需要很好地改进。
反比例函数的内容比较抽象、难懂,是学生怕学的内容。如何化解这一教学难点,使学生有效地理解和掌握这一重点内容呢?我在反比例函数的意义的教学中做了一些尝试。学生已有一定的函数知识基础,并且有正比例的研究经验,这为反比例的数学建模提供了有利条件,教学中我利用类比、归纳的数学思想方法开展数学建模活动。
一、创设情景,激发求知欲望。
我选择了百米赛跑中时间与速度的关系等素材组织活动,让学生从生活实际中发现数学问题,从而引入学习内容,这不仅激发了学生学习数学的兴趣,还激起了学生自主参与的积极性和主动性,为自主探究新知创造了现实背景并...
08-16
教学工作经过课堂实践后,总会有很多发现和缺陷,需要教学反思,进行总结和改进。教学反思怎么写?以下文章“正比例反比例教学反思范文”由出国留学网为您提供,希望对您有所帮助!
这几天学习了正比例反比例,从学生掌握情况来看,对于“正比例和反比例的意义”这部分内容 学生理解并掌握了这种数量关系,可以应用它解决一些简单的正、反比例方面的实际问题。
生活是数学知识的源泉,正反比例是来源于生活的,我认为教学中既要重视这一点,又要注重知识体系的形成中逻辑性,严密性与连贯性的统一。因此,在处理教材时,没用教材的例子,而是举的学生熟悉的生活例子找规律,再由规律回归生活。这样一节课的40分钟质量很高。 教学中,我从创设生活数学问题入手,进入新课学习,在学生掌握新知的基础上,提供一个具有综合性、开放性的题目:“你能举出一个正比例或反比例的例子吗?为什么?”在学生能准确由
A X B = C(一定)表示三量之间的比例关系后,我又设计了这样一个环节:请同学自己举一些生活中较熟悉的三量关系,说说它们之间存怎样的关系,再次回归生活,让学生体验教学的价值,这也是新课程教学理念――人人学有价值的数学。
教学中,我尊重学生的的个性差异,尊重学生的学习成果。如:在学生知道了正、反比例的意义、关系式后,我提出:“用你喜欢的方式表示正、反比例的联系和区别。”既注重了科学学习方法的渗透,又尊重了学生的个性发展和学习成果。
在教学了正比例了知识后,大部分学生都明白了如何判断两个量是不是正比例,在做相关的题目时,学生出错的可能性不大,主要在于语言表达的完整性和科学性上。可是一旦教授了反比例的知识之后,学生开始混淆两者了!不知道是把两个量相“乘”还是相“除”!这在某种意义上来说是由于学生对于“正”和“反”的理解不够到位。
所谓的“正”,我们可以理解为:一个量变大,另一个量也随着变大;一个量变小,另一个量也随着变小。总而言之,两个量发生了相同的变化。那么反比例的“反”怎么理解呢?有的同学已经可以自己概括了:两个量发生了不同的变化,即一个变大另一个就随着变小;一个变小另一个就随着变大。这样的讲解可以使学生掌握可靠的、初步判断两个量可能成什么比例的方法,有助于有序思维的展开!
另外我们还可以结合图像,我们也可以很清楚的将两者区分开来!正比例的图像是一条直线(直线过原点,并且方向向上),反比例的图像则是一条弯弯的曲线(在教师的辅助下,学生用描点的方法画出图像)。
课上学生基本能够正确判断,说理也较清楚。但是在课后作业中,发现了不少问题,对一些不是很熟悉的关系如:车轮的直径一定,所行使的路程和车轮的转数成何比例?出粉率一定,面粉重量和小麦的总重量成何比例?学生在判断时较为困难,说理也不是很清楚。可能这是学生先前概念理解不够深的缘故吧!以后在教学这些概念时,应该有前瞻性,引导学生对以前所学的知识进行相关的复习,然后在进行相关形式的练习,我想对学生的后继学习必然有所帮助。
教学有法,但教无定法,贵在得法,我认为只要切合学生实际的,让师生花最短的时间获得最大的学习效益的方法都是成功的,都是有价值的,我以后会大胆尝试,努力创造民主和谐、轻松愉悦、积极上进,共同发展的新课堂吧!
反比例教学反思推荐访问