出国留学网专题频道多边形课件栏目,提供与多边形课件相关的所有资讯,希望我们所做的能让您感到满意!
老师都需要为每堂课准备教案课件,每位老师都需要认真准备自己的教案课件。制定好教案需要教师对教育思想的认识和掌握。在这篇文章中我们将从各种角度深入剖析“多边形的面积课件”,请熟知本文的内容!
“组合图形的面积”是小学数学人教版第九册第五单元的内容。教材把这一内容安排在平行四边形、三角形和梯形面积计算之后学习,让学生知道在进行组合图形面积计算时,要把一个组合图形转化成已学过的平面图形再进行计算,这样既可以巩固对各种平面图形特征的认识和面积公式的运用,又有利于发展学生的空间观念并解决一些实际问题。教材在内容呈现上突出了两个部分,一是感受计算组合图形面积的必要性。二是针对组合图形的特点强调学生学习的自主探索性。
根据学生已有的生活经验,通过直观操作,对组合图形的认识不会很难,所以在探索组合图形面积的计算方法时,我通过自主探索、小组合作交流等方式达到方法的多样化。
基于以上的分析,我确立本节课的教学目标:
1、知识目标:在自主探索过程中,理解计算组合图形面积的多种方法;并能根据组合图形的条件有效地选择合理的计算方法解决问题;能运用所学的知识解决生活中的问题。
2、能力目标:培养运用多种策略解决实际问题的意识,渗透转化的学习思想策略。
3、情感目标、感受数学与生活的密切联系,体会组合图形的面积在实际生活中的应用价值。
针对五年级学生的年龄特点和认知水平,我确定本节课的教学重难点为:认识简单的组合图形,会把组合图形分解成已学过的平面图形并计算出它的面积。
教学难点:引导学生观察组合图形,根据图形的特点,运用不同的方法计算出它的面积。在这个过程中,培养学生运用多种策略解决实际问题的意识。
在教学中,我充分利用多媒体教学课件引发学生的兴趣,调动学生的积极性,激活学生原有知识和经验并以此为基础展开想象和思考,自觉地构建良好的知识体系,特别是转化图形的几种方法通过课件的演示,学生一目了然,直观形象,更好的突出了教学重点、突破了教学难点。
设计中放手让学生大胆探索,让学生在拼一拼、分一分、画一画、算一算中体验,在体验中思考,在思考中发展。老师说的很少,基本上都是由学生自己探究出来的,充分发挥了学生的主体作用。
学生是学习的主体,只有当学生真正自己主动、积极的参与到学习中时,才能最为有效地提高学生的学习效果。引导学生自己来观察组合图形的特点,思考解决问题的方法,逐步构建自己的知识体系,也有利于后面小组的合作学习以及更好地倾听他人的不同意见,进一步完善自己的知识体系。
小组合作学习能够帮助学生在有限的时间里,通过与他人的交流与合作,获取更多的方法,找到合适、有效的解决问题的方法。本课让学生在自主观察思考的前提下,通过小组合作学习来进一步拓宽学生的思维空间,提升学生的学习能力。
为完成本节教学目标,突出重点,突破难点,让学生充分体会到数学就在身边,感受到组合图形的趣味性,我制定了以下教学环节:
首先,让学生欣赏一些日常生活中经常见到的图片,让学生观察比较说一说共同之处,同时说说这些图片的表面都由哪些图形组合而成的。(这里让学生说出物品表面的图形组成,为建立组合图形的概念和计算组合图形的面积打下基础。)
其次,让学生说一说生活中的组合图形。这时我让学生畅所欲...
07-01
教案课件是老师上课中很重要的一个课件,当然教案课件里的内容一定要很完善。设计教案需要结合教师教学风格和特点。经过仔细分析编辑为您编辑了“多边形课件”,欢迎你收藏本站,并关注网站更新!
今天我说课的题目《多边形及其内角和》,这是我在进行完这节课的教学后结合着课堂进行情况以及我对《新课程标准理》的理解从以下几个方面进行的反思。
一、教材分析
《多边形的内角和》选自人教版八年级上册的第十一章第三节,《多边形内角和》是本章的一个重点,是三角形有关知识的拓展,是以后学平面镶嵌的基础,多边形内角和公式的运用还充分体现了图形与客观世界的联系。在内容上,起着承上启下的作用,是在学生学习了一元一次方程、三角形内角和知识和多种平面几何图形的基础上进行的,目的是使学生进一步了解多边形的性质,感受图形世界的现实性和丰富多彩,同时在教学中渗透类比,转化等思想方法培养学生用联系的变换的观点思考问题。
二、学情分析
1、我所任教的班级,大部分学生来自农村,基础知识参差不齐,但从小独立性较强,性格活泼,喜欢合作讨论,对数学学习有较浓厚的兴趣。经过了一年的小组合作方式的磨合,大部分学生已经养成了良好的学习习惯,具有一定的理解能力和归纳能力。
2、学生已经学习了三角形的内角和,这为本节课的学习打下了一定的基础。八年级学生好奇心比较强,观察能力、动手能力、自主探究能力都得到一定的训练,所以在探究任意四边形内角和时学生采用了测量、拼图、折纸、分割的方法,但是把多边形转化为三角形这一过程是学生学习的难点,所以在探究的过程中注重了把难点分散,有利于学生对本课知识的学习和掌握。
三、教学目标分析
根据《新课程标准》的要求,本节内容的特点以及学生的情况,我确定以下教学目标和重、难点。
【知识与技能】
认识多边形,了解多边形的定义,多边形的顶点、边、对角线、内角及外角等概念;探索并掌握多边形内角和定理与外角和公式,在理解的基础上运用其解决简单的实际问题。
【数学思考】
学生通过猜想、动手实践、合作交流,归纳等活动探索多边形的内角和公式与外角和公式,激发学生兴趣、调动学生积极性、鼓励学生的的创造性思维,感受数学思考过程的条理性。
【问题解决】
通过探索多边形的内角和获得分析问题和解决问题的一些基本方法,并体验解决问题方法的多样性,发展创新意识,渗透转化思想在数学学习中的应用。
【情感态度】
在数学学习过程中,体验学习的快乐、获得成功的喜悦,激发对图形学习的好奇心,形成积极参与数学活动、主动与他人交流合作的意识。
【教学重点】探索多边形的内角和公式。
【教学难点】探究多边形内角和时,如何把多边形转化成三角形。
四、教法和学法分析
在这节课的教学中我结合了学生的实际情况和教学目标,借鉴了美国教育学家杜威的“做中学”的教育理论,运用了如下的教学方法。
1.教学方法:
根据新课成标准,教师教学应该以学生的认知发展水平和已有的经验为基...
【教学目标】
1.进一步掌握平行四边形、三角形、梯形面积公式的推导过程,能运用公式正确、熟练地计算它们的面积,并能解决一些简单的实际问题。
2.培养初步的想像能力和抽象概括能力。
3.渗透在生活中处处有数学,事物间互相联系互相转化的辩证唯物主义观点。
【教学重难点】
运用公式正确、熟练地计算它们的面积,并能解决一些简单的实际问题。
【教学手段】
自主学习、合作学习、交流讨论
【教学准备】
学生课前整理的知识图、课件
【教学过程】
一、整理知识点
1.学生交流各自的复习整理图,以小组为单位。
2.请一个学生上来展示自己的整理图。随后再请几名学生上来补充内容,查缺补漏,充实本单元的内容。直到没有学生还有补充为止。
3.老师展示自己的整理图(课件演示),重点演示了平行四边形、三角形、梯形面积公式的推导过程。
4.以小组为单位,根据刚才共同整理的结果,对自己的整理图进行查缺补漏。
[设计意图:此节课是对多边形面积的整理与复习,平时我重视让学生对知识的整理,教会他们整理的方法,最常用的是用思维图的方式进行整理,通过一段时间的引导,学生们已完全掌握了知识图的整理方法。在此节课前一天的作业布置中,我便让学生对此相关的知识进行整理,并将整理结果制成图于上课时带来交流。这样的作业容绘画与知识整理与一体,加上艳丽的色彩,美丽的图案,极大地调动了学生们参与积极性,改变了以前单调且枯燥的作业,是学生非常喜欢的。]
二、基础练习
这题让学生即时口答,只列式,不计算。
[设计意图:
三、进阶篇(学生本单元的易错题)
1.
让学生先思考,再答题。请答对的学生说出原因。
2.
注:此题下面的图示是当学生有结论或无法讨论出结论时出现。
以小组为单位交流,学生分为两派,错对各一派,请认为错的同学说出理由。
3.
学生独立完成,做堂练本。请两名同学生上台板演。
四.拓展篇
以小组为单位,给一定的时间讨论出计算方法即可。请小组上汇报交流方法。
[设计意图:如果复习课只停留在对知识的记忆与机械地应用,这样的复习课只能说是一种低效的课,我在设计练习时设置了基础篇、进阶篇、拓展篇,知识层次分明,呈螺旋上升之趋势,习题来源于平时我搜集到的学生中的错题,意在引起学生对错题的注意。进阶篇的题目旨在加深学生对所学知识的理解提高应用水平。运用现阶段所学习的主要方法解决的变式题。第三个题型是拓展题,对一些知识进行综合训练,意在加强知识之间的联系,培养综合运用知识、问题解决和创新能力。结合教学内容针对不同的教育对象,分层次,适当的设计起点高,难度大,有利于培养学生创新能力的问题。]
五、课外篇
以小组为单位,寻找方法计...
05-18
常见情况是老师上课前会准备好教案课件,每天都要付出努力来完善每份教案课件。好的教学质量和教案质量是紧密相关的,相辅相成。那么,一份教案课件要怎样才算得上优质呢?如果您需要遵循一些标准的建议,欢迎阅读本文并分享给周围的朋友!(标题为:如何打造优质教案课件)
教学目的
使学生能熟练灵活地利用三角形内角和,外角和以及外角的两条性质进行有关计算。
重点:利用三角形的内角和与外角的两条性质来求三角形的内角或外角。
难点:比较复杂图形,灵活应用三角形外角的性质。
教学过程
一、复习提问
1.三角形的内角和与外角和各是多少?
2.三角形的外角有哪些性质?
二、新授
例1.在△ABC中,∠A=12∠B=13∠C,求△ABC各内角的度数。
分析:由已知条件可得∠B=2∠A,∠C=3∠A所以可以根据三角形的内角和等于180°来解决。
做一做:如图,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=80°,∠C=46°
A
BDEA
(1)你会求∠DAE的度数吗?与你的同伴交流。
(2)你能发现∠DAE与∠B、∠C之间的关系吗?
(2)若只知道∠B-∠C=20°,你能求出∠DAE的度数吗?
分析:(1)∠DAE是哪个三角形的内角或外角?
(2)在△ADE中,已知什么?要求∠DAE,必需先求什么?
(3)∠AED是哪个三角形的外角?
(4)在△AEC中已知什么?要求∠AEB,只需求什么?
(5)怎样求∠EAC的度数?
三、巩固练习
1.如图,△ABC中,∠BAC=50°,∠B=60°,AD是△ABC的角平分线,求∠ADC,∠ADB的度数。
2.已知在△ABC中,∠A=2∠B-10°,∠B=∠C+20°。求三角形的各内角的度数。
四、小结
三角形的内角和,外角的性质反映了三角形的三个内角外角是互相联系与制约的,我们可以用它来求三角形的内角或外角,解题时,有时还需添加辅助线,有时结合代数,用方程来解比较方便。
[教学目标]
知识与技能:
1.会用多边形公式进行计算。
2.理解多边形外角和公式。
过程与方法:
经历探究多边形内角和计算方法的过程,培养学生的合作交流意识力.
情感态度与价值观:
让学生在观察、合作、讨论、交流中感受数学转化思想和实际应用价值,同时培养学生善于发现、积极思考、合作学习、勇于创新的学习态度。
<...
多边形课件推荐访问