出国留学网专题频道平面向量应用举例教案栏目,提供与平面向量应用举例教案相关的所有资讯,希望我们所做的能让您感到满意!
11-30
教学准备
教学目标
1.通过平行四边形这个几何模型,归纳总结出用向量方法解决平面几何的问题的”三步曲”;
2.明确平面几何图形中的有关性质,如平移、全等、相似、长度、夹角等可以由向量的线性运算及数量积表示.;
3.让学生深刻理解向量在处理平面几何问题中的优越性.
教学重难点
教学重点:用向量方法解决实际问题的基本方法:向量法解决几何问题的“三步曲”.
教学难点:如何将几何等实际问题化归为向量问题.
教学过程
由于向量的线性运算和数量积运算具有鲜明的几何背景,平面几何图形的许多性质,如平移、全等、相似、长度、夹角等都可以由向量的线性运算及数量积表示出来,因此,可用向量方法解决平面几何中的一些问题,下面我们通过几个具体实例,说明向量方法在平面几何中的运用。
例1、平行四边形是表示向量加法与减法的几何模型。如图,你能发现平行四边形对角线的长度与两条邻边长度之间的关系吗?
思考:
运用向量方法解决平面几何问题可以分哪几个步骤?
运用向量方法解决平面几何问题可以分哪几个步骤?
“三步曲”:
(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;
(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;
(3)把运算结果“翻译”成几何关系.
...平面向量应用举例教案推荐访问