出国留学网专题频道扇形面积计算公式栏目,提供与扇形面积计算公式相关的所有资讯,希望我们所做的能让您感到满意!
扇形面积计算公式是怎样的,有同学还记得吗,不记得了话,快来小编这里瞧瞧。下面是由出国留学网小编为大家整理的“扇形面积计算公式是怎样的”,仅供参考,欢迎大家阅读。
扇形面积计算公式:S扇=(n/360)πR²,S扇=1/2lr(知道弧长时),S扇=(1/2)θR²(θ为以弧度表示的圆心角),S扇=(lR)/2 (l为扇形弧长)。R是扇形半径,n是弧所对圆心角度数,π是圆周率,L是扇形对应的弧长。
圆心角是120° 半径3cm的扇形的面积为:S=(1/2)*120°*3²=540cm²
(弧度制)循环链条扇形面积计算公式:
扇形面积S=圆心弧度绝对值|a|×半径r² / 2
圆心弧度绝对值|a| =扇形面积S×2 /半径r²
弧长L=圆心弧度绝对值|a|×半径r
扇形面积S=弧长L×半径r / 2
弧长公式:
l = n(圆心角)× π(圆周率)× r(半径)/180=α(圆心角弧度数)× r(半径)
在半径是R的圆中,因为360°的圆心角所对的弧长就等于圆周长C=2πr,所以n°圆心角所对的弧长为l=n°πr÷180°(l=n°x2πr/360°)。
注意事项:
扇形还与三角形有相似之处,上述简化的面积公式亦可看成:弧长与半径乘积的一半,与三角形面积,为底和高乘积的一半相似。
扇形的面积公式为:S扇=(lR)/2。在几何数学中扇形是圆的一部分,由两个半径和和一段弧围成,在较小的区域被称为小扇形,较大的区域被称为大扇形。
几何就是研究空间结构及性质的一门学科。它是数学中最基本的研究内容之一,与分析、代数等等具有同样重要的地位,并且关系极为密切。几何学发展历史悠长,内容丰富。
数学关于弧度的公式大全
在数学和物理中,弧度是角的度量单位。它是由国际单位制导出的单位,单位缩写是rad。定义:弧长等于半径的弧,其所对的圆心角为1弧度。
根据定义,一周的弧度数为2πr/r=2π,360°角=2π弧度,因此,1弧度约为57.3°,即57°17'44.806'',1°为π/180弧度,近似值为0.01745弧度,周角为2π弧度,平角(即180°角)为π弧度,直角为π/2弧度。
在具体计算中,角度以弧度给出时,通常不写弧度单位,直接写值。最典型的例子是三角函数,如sin 8π、tan (3π/2)。
在初中数学中,我们学过圆弧长公式:
弧长=nπr2/360,在这里n就是角度数,即圆心角n所对应的弧长。
但如果我们利用弧度的话,以上的式子将会变得更简单:(注意,弧度有正负之分)
l=|α| r,即α的大小与半径之积。
同样,我们可以简化扇形面积公式:
S=|α| r^2/2(二分之一倍的α角的大小,与半径的平方之积,从中我们可以看出,当|α|=2π,即周角时,公式变成了S=πr^2,圆面积的公式!)
...扇形面积计算公式推荐访问