出国留学网专题频道抽屉问题栏目,提供与抽屉问题相关的所有资讯,希望我们所做的能让您感到满意!
今天小编为大家提供行测数量关系备考辅导:速解抽屉问题,希望大家熟练掌握抽屉问题概念、核心思想以及都有哪些题型!祝大家备考顺利!
在公务员考试行测中,数量关系难度大,耗时长,所以很多考生选择放弃。但是殊不知有一些问题还是很容易的。只要积累了相应的结论和公式,再对于这种题进行题型归纳,这些分数是可以把握住的。在接下来,小编带着广大考生一起来看抽屉问题如何解决。
一、概念透析
若把多于n件物品放入n个抽屉中,则一定有一个抽屉中的物品数不少于2件;若有多于m×n件物品放入n个抽屉中,则一定有一个抽屉中的物品数不少于m+1件。
二、核心思想
用抽屉原理当中的2种简单的情况去体会均、等、接近的核心思想。
2个苹果放到3个抽屉里,“至少有一个抽屉是空的”是怎么得出来的?把2个苹果平均放到2个抽屉中,那肯定会有一个抽屉是空的。
3个苹果放到2个抽屉里,“至少有一个抽屉里苹果数 2”是怎么得出来的?先把2个苹果平均放到2个抽屉中,此时还多出一个苹果,但又必需放到抽屉里去,那肯定会出现有一个抽屉里的苹果数是2。
三、三种题型
1、求结果数
例1.121本书分给30名同学,每人至少一本,拿到最多的学生至少拿多少本书?
解析:利用抽屉原理的结论可以列式:121÷30=4……1,得到m=4,最终我们可以知道拿到最多的学生至少拿5本书。此题不难发现与我们的和定最值问题中考虑最大量的最小值是完全一样的。
2、求抽屉数
例2.把150本书分给四年级某班的同学,如果不管怎样分,都至少有一位同学会分得5本或5本以上的书,那么这个班最多有多少名学生?
解析:“不管怎样分,都至少有一位同学会分得5本或5本以上的书”,让每名同学先各拿到4本,150÷4=37…2,此时还剩余2本,再平均分给任何两名同学,即可满足题目要求,所以此班最多有37名学生。
3、求苹果数
例3.若干本书,发给50名同学,至少需要多少本书才能保证有同学能拿到4本书?
解析:“至少才能保证”就是考虑最差情况,让每名同学先各拿到3本,在这种情况下,再有一本书发给任何一名同学,就能保证有同学拿到4本书,所以,共需50×3+1=151本。
通过上面三种题型的总结,小编相信大家对于抽屉问题有了一定的了解,那么希望大家在接下来的学习中能够勇于探索,利用好的方法去做题。
在数量关系考试中,排列组合题目一直被广大考生视为较为难拿分的部分,之所以难就在于分辨不出何时用加法与乘法导致往往将方法数算多或者将方法数算少。下面中公教育专家就计数原理中加法与乘法的问题进行专门的介绍:
一、计数原理
1.加法原理(分类计数):完成一件事情有几类方式,把方式数加在一起的原理...
2018年国家公务员考试开始啦,朋友们一定要好好复习,在这里提前预祝考生们都能取得好成绩!出国留学网公务员为您整理的《2018年国家公务员行测考试指导:浅析抽屉问题》,希望对您有所帮助!
2018年国家公务员行测考试指导:浅析抽屉问题
一、利用均和等的思想解决抽屉问题
这种方法考察的范围比较小,仅可以用于解决每个抽屉里可容纳的苹果数一样多的问题。
(1) 已知苹果数,抽屉数,求结论数
方法:苹果数÷抽屉数的商+1
例:某个班级有52名同学,问这52名学生中人数最多的那个属相至少有多少人?
在这条道题目中,抽屉相当于属相,数量是12个,且每个抽屉可容纳的人数都是无穷的,则52÷12商为4,那么结论是4+1=5,即至少有5个人。
(2) 已知抽屉数,结论数,求苹果数
方法:(结论数-1)*抽屉数
例:若干本书发给23名同学,至少需要多少本书才能保证有同学能拿到4本书?
这里的抽屉是同学,每个人可以拥有的书的数量是相同的,都是无穷的,则(4-1)*23+1=70,至少需要70本书才能满足要求。
例:某区要从10位候选人中投票选举人大代表,现规定每位选举人必须从这10位候选人中任选2位投票,问至少要有多少位选举人参加投票,才能保证有不少于10位选举人投了相同2位候选人的票?
这里的抽屉2位候选人的不同情况的情况数, =45,则抽屉数为45,(10-1)*45+1=406
所以至少要有406名候选人才能满足要求。
(3) 已知苹果数,结论数,求抽屉数
方法:苹果数÷(结论数-1)所得的商即为所求抽屉数。
例:把150本书分给若干名同学,不管怎么分,都至少有1位同学分得5本及5本以上的书,那么最多有多少名学生?
150÷(5-1)所得的商为37,故最多有37名同学
在以上的3个考点中前2个考点是相对来说比较重要的,在公考中出现过得考点。
二、利用最不利原则解决抽屉问题
这种方法基本可以用于求解所有的抽屉问题,尤其是对于解决每个抽屉里容纳的苹果数不一样多的问题最有效了。
最不利原则,是差一点原则,考虑与成功一线之差的情况。
保证数=最不利数+1
例:一个箱子里有10张彩票,其中只有一张是有奖彩票,问不放回的抽取,问至少抽多少次才能保证抽到有奖的那张?
最糟糕的情况是抽的前9张都是没有奖的,即最不利数为9,则保证数=9+1=10.
例:有300名求职者参加高端人才专场招聘会,他们分别来自四个不同的学校,且每个学校分别有100,80,70,50人。问至少有多少人找到工作,才能保证一定有70名找到工作的人专业相同?
最不利数=69+69+69+50=257 保证数=257+1=258
在解决抽屉问题中,最不利原则是最重要的原则,在第一种情况中,也可以利用最不利解,比如3个苹果放到2个抽屉里,最不利的情况就是均放,所以它们是相通的。
出国留学网为大家提供《2018年国考行测答题技巧:解决抽屉问题的两个“重心”》,更多公务员考试相关资讯请关注我们网站的更新!
2018年国考行测答题技巧:解决抽屉问题的两个“重心”
抽屉问题,又叫狄利克雷原则。这类题型有两个原则。
原则一:把多于n个的元素,按任意确定的方式分成n个集合,那么一定至少有一个集合中,含有至少两个元素。
原则二:把多于m×n个元素放入n个抽屉中,那么,一定有一个抽屉里有m+1个或者m+1个以上的元素。抽屉原则是证明符合某种条件的对象存在性问题有力工具。应用抽屉原则解决问题的关键是如何构造抽屉。
对于抽屉问题,各位考生学习的重点有两个:1、根据题目特征快速判断出此题为抽屉问题;2、其相应的解题方法要能够立刻浮现在脑海中。
要想解决第一个重点,各位考生只需记住抽屉问题的题型特征,即出现“至少……才能保证(一定)……”的字眼,即可快速判断出该题为抽屉问题。
要想解决第二个重点,各位考生需知道解决这类题目最快速最核心的方法为最不利原则,即题目要求达到某个目的,我们就想尽办法不满足它,这样的话就可以考虑最不利的、最倒霉的的情况,最后在此情况的基础上加1即恰好满足了题干的要求。
例1.从一副抽掉大小王的扑克牌中,至少抽出( )张牌,才能保证至少有2张牌的花色相同。
A.2
B.3
C.4
D.5
【答案】D
解析:此题包含了“至少……才能保证(一定)……”的字眼,故属于抽屉问题。此题中的目标是2张花色相同的牌,而一副无大小王的扑克牌由4种花色那么最倒霉最不利的情况莫过于将每种花色各抽1张牌,即一共抽4×1=4张,最后再抽1张,无论抽到什么样的牌都可以保证此牌的花色与之前抽出的四张牌中的某一张为相同花色,即至少抽出4+1=5张牌,才能保证至少有2张牌的花色相同,故选D。
例2.从一副完整的扑克牌中。至少抽出( )张牌,才能保证至少有2张牌的花色相同。
A.5
B.6
C.7
D.8
【答案】C
解析:最倒霉的情况为每种花色各抽1张牌,此时还不能忘了大小王,即共抽4×1+2=6张牌,最后再抽1张,即至少抽出6+1=7张牌,才能保证至少有2张牌的花色相同,故选C。
例3.从一副完整的扑克牌中。至少抽出( )张牌,才能保证至少有6张牌的花色相同。
A.21
B.22
C.23
D.24
【答案】C
解析:最倒霉的情况为每种花色各抽5张牌,不忘大小王,即共抽5×4+2=22张牌,最后再抽1张,即至少抽出23张牌,才能保证至少有6张牌的花色相同,故选C。
最新消息>>>
众所周知,公务员行测考试每道题目平均做题时间约为50秒,时间紧,出题范围又广,是考生公认的难度较大的考试,成为众多考生的梦魇,因此必须转化思维,利用一些解题技巧来简化计算,提高解题速度。下面为大家收集并整理一些试题,供大家参考!
从1、2、3、…、12中,至少要选( )个数,才可以保证其中一定包括两个数的差是7?
A. 7 B. 10 C. 9 D. 8
【答案】D
在这12个数中,差是7的数有以下5对:(12,5)、(11,4)、(10,3)、(9,2)、(8,1)。另有两个数6、7肯定不能与其他 数形成差为7的情况。由此构造7个抽屉,只要有2个数取自一个抽屉,那么他们的差就等于7。从这7个抽屉中能够取8个数,则必然有2个数取自同一个抽屉。 所以选择D选项。
抽屉原理是公务员考试行政职业能力测验数量关系重要考点,也是相当一部分考生头痛的问题,老师通过历年公务员考试真题介绍了抽屉原理的应用。
一、抽屉问题原理
抽屉原理最先是由19世纪的德国数学家迪里赫莱运用于解决数学问题的,所以又称为“迪里赫莱原理”,也被称为“鸽巢原理”。
鸽巢原理的基本形式可以表述为:
定理1:如果把N+1只鸽子分成N个笼子,那么不管怎么分,都存在一个笼子,其中至少有两只鸽子。
证明:如果不存在一个笼子有两只鸽子,则每个笼子最多只有一只鸽子,从而我们可以得出,N个笼子最多有N只鸽子,与题意中的N+1个鸽子矛盾。
所以命题成立,故至少有一个笼子至少有两个鸽子。
鸽巢原理看起来很容易理解,不过有时使用鸽巢原理会得到一些有趣的结论:
比如:北京至少有两个人头发数一样多。
证明:常人的头发数在15万左右,可以假定没有人有超过100万根头发,但北京人口大于100万。如果我们让每一个人的头发数呈现这样的规律: 第一个人的头发数为1,第二个人的头发数为2,以此类推,第100万个人的头发数为100万根;由此我们可以得到第100万零1个人的头发数必然为 1-100万之中的一个。于是我们就可以证明出北京至少有两个人的头发数是一样多的。
定理2:如果有N个笼子,KN+1只鸽子,那么不管怎么分,至少有一个笼子里有K+1只鸽子。
举例:盒子里有10只黑袜子、12只蓝袜子,你需要拿一对同色的出来。假设你总共只能拿一次,只要3只就可以拿到相同颜色的袜子,因为颜色只有两种(鸽巢只有两个),而三只袜子(三只鸽子),从而得到“拿3只袜子出来,就能保证有一双同色”的结论。
二、公务员考试抽屉问题真题示例
在历年国家公务员考试以及地方公务员考试中,抽屉问题都是重要考点,下文,通过经典例题来分析抽屉原理的使用。
例1:从1、2、3、…、12中,至少要选( )个数,才可以保证其中一定包括两个数的差是7?
A. 7 ...
抽屉问题推荐访问