出国留学网数学知识点有哪些

出国留学网专题频道数学知识点有哪些栏目,提供与数学知识点有哪些相关的所有资讯,希望我们所做的能让您感到满意!

高三下册数学知识点有哪些

 

  高三马上面临高考,那么高三下册数学知识点有哪些呢。以下是由出国留学网编辑为大家整理的“高三下册数学知识点有哪些”,仅供参考,欢迎大家阅读。

  高三下册数学知识点有哪些

  判别式

  b2-4ac=0 注:方程有两个相等的实根

  b2-4ac>0 注:方程有两个不等的实根

  b2-4ac<0 注:方程没有实根,有共轭复数根

  两角和公式

  sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

  cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

  ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

  倍角公式

  tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

  cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

  半角公式

  sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

  cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

  tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

  ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

  和差化积

  2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

  2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

  sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

  tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

  ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

  拓展阅读:高三提升数学成绩方法

  高三提高数学成绩的方法一

  1、考题从填空选择开始,所考知识点由简单到复杂,也就是说前面的题相对较为简单;

  2、数学计算题的考点往往在于知识点的衔接,就是一个考题中穿插着多个考点,考生需要熟悉这些考点...

高二下期数学知识点有哪些

 

  数学作文高中主科之一,那么高二上册数学知识点有哪些呢。以下是由出国留学网编辑为大家整理的“高二下期数学知识点有哪些”,仅供参考,欢迎大家阅读。

  高二下期数学知识点

  一、曲线与方程

  1.椭圆

  椭圆的定义是椭圆章节的基础内容,高考对本节内容的考查可能仍然将以求椭圆的方程和研究椭圆的性质为主,两种题型均有可能出现.椭圆方面的知识与向量等知识的综合考查命题趋势较强。

  2.双曲线

  标准方程的求法:双曲线标准方程最常用的两种方法是定义法和待定系数法.利用定义法求解,首先要熟悉双曲线的定义,只要知道双曲线的焦点和双曲线上的任意一点的坐标都可以运用定义法求解其标准方程;解法二是利用待定系数法求解,是求双曲线方程的根本方法之一,其思想是根据题目中的条件确定双曲线方程中的系数a,b,主要是解方程组;解法三是利用共焦点曲线系方程求解,其要点是根据题目中的一个条件写出含一个参数的共焦点的二次曲线系方程,再根据另外一个条件求出这个参数.

  3.抛物线

  1)利用已知条件求抛物线方程,一般有两种方法:待定系数法和轨迹法。

  2)韦达定理的熟练运用,可以防止运算复杂的焦点坐标,巧妙利用抛物线的性质进行解题。

  3)焦点弦的几何性质是答题中容易忽略的问题,在复杂的求解抛物线方程中,运用好这方面的知识能够少走很多弯路。

  用点差法解圆锥曲线的中点弦问题

  二、空间几何体

  1.空间几何体的考查主要以其识别和应用为主,以填空题的形式出现,分值大约在5分。对空间几何体的形状、位置关系、数量特征、表面积和体积的命题需要加以关注。

  2.球的面积和体积:计算球的面积和体积就要求出球的半径,在具体的空间几何体中,首先要确定球心的位置,这样才能根据已知数据求出半径,除球以外的空间几何体在求体积时都离不开”高“,要注意使用线面垂直的相关定理确定高线。

  三、正弦定理和余弦定理

  1.正弦定理

  在一个三角形中,各边和它所对角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R

  2.余弦定理

  三角形中,任意一边的平方等于另外两边的平方和减去另两边及其夹角的余弦的积的两倍。

  3.例题:熊丹老师教你正弦定理做题时的注意事项

  四、常用逻辑用语

  1、四种命题:

  ⑴原命题:若p则q;⑵逆命题:若q则p;⑶否命题:若 p则 q;⑷逆否命题:若 q则 p

  注:1、原命题与逆否命题等价;逆命题与否命题等价。判断命题真假时注意转化。

  2、注意命题的否定与否命题的区别:命题 否定形式是 ;否命题是 .命题“ 或 ”的否定是“ 且 ”;“ 且 ”的否定是“ 或 ”.

  3、逻辑联结词:

  ⑴且(and) :命题形式 p q; p q p q p q p

  ⑵或(or):命题形式 p q; 真 真 真 真 假

  ⑶非(not):命题形式 p . 真 假 假 真 假

  假 真 假 真 真

初一下册数学知识点有哪些

 

  数学作为初中主科之一,那么初一下期数学知识点有哪些呢。以下是由出国留学网编辑为大家整理的“初一下册数学知识点有哪些”,仅供参考,欢迎大家阅读。

  初一下册数学知识点有哪些

  1.1正数和负数

  以前学过的0以外的数前面加上负号“-”的书叫做负数。

  以前学过的0以外的数叫做正数。

  数0既不是正数也不是负数,0是正数与负数的分界。

  在同一个问题中,分别用正数和负数表示的量具有相反的意义

  1.2有理数

  1.2.1有理数

  正整数、0、负整数统称整数,正分数和负分数统称分数。

  整数和分数统称有理数。

  1.2.2数轴

  规定了原点、正方向、单位长度的直线叫做数轴。

  数轴的作用:所有的有理数都可以用数轴上的点来表达。

  注意事项:

  ⑴数轴的原点、正方向、单位长度三要素,缺一不可。

  ⑵同一根数轴,单位长度不能改变。

  一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。

  1.2.3相反数

  只有符号不同的两个数叫做互为相反数。

  数轴上表示相反数的两个点关于原点对称。

  在任意一个数前面添上“-”号,新的数就表示原数的相反数。

  1.2.4绝对值

  一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。

  一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。

  在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。

  比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数。

  ⑵两个负数,绝对值大的反而小。

  1.3有理数的加减法

  1.3.1有理数的加法

  有理数的加法法则:

  ⑴同号两数相加,取相同的符号,并把绝对值相加。

  ⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

  ⑶一个数同0相加,仍得这个数。

  两个数相加,交换加数的位置,和不变。

  加法交换律:a+b=b+a

  三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。

  加法结合律:(a+b)+c=a+(b+c)

  1.3.2有理数的减法

  有理数的减法可以转化为加法来进行。

  有理数减法法则:

  减去一个数,等于加这个数的相反数。

  a-b=a+(-b)

  拓展阅读:数学解题方法

  (1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。

  (2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此...

高二上学期数学知识点有哪些

 

  数学作文高中主科之一,那么高二上册数学知识点有哪些呢。以下是由出国留学网编辑为大家整理的“高二上学期数学知识点有哪些”,仅供参考,欢迎大家阅读。

  高二学期数学知识点

  一、曲线与方程

  1.椭圆

  椭圆的定义是椭圆章节的基础内容,高考对本节内容的考查可能仍然将以求椭圆的方程和研究椭圆的性质为主,两种题型均有可能出现.椭圆方面的知识与向量等知识的综合考查命题趋势较强。

  2.双曲线

  标准方程的求法:双曲线标准方程最常用的两种方法是定义法和待定系数法.利用定义法求解,首先要熟悉双曲线的定义,只要知道双曲线的焦点和双曲线上的任意一点的坐标都可以运用定义法求解其标准方程;解法二是利用待定系数法求解,是求双曲线方程的根本方法之一,其思想是根据题目中的条件确定双曲线方程中的系数a,b,主要是解方程组;解法三是利用共焦点曲线系方程求解,其要点是根据题目中的一个条件写出含一个参数的共焦点的二次曲线系方程,再根据另外一个条件求出这个参数.

  3.抛物线

  1)利用已知条件求抛物线方程,一般有两种方法:待定系数法和轨迹法。

  2)韦达定理的熟练运用,可以防止运算复杂的焦点坐标,巧妙利用抛物线的性质进行解题。

  3)焦点弦的几何性质是答题中容易忽略的问题,在复杂的求解抛物线方程中,运用好这方面的知识能够少走很多弯路。

  用点差法解圆锥曲线的中点弦问题

  二、空间几何体

  1.空间几何体的考查主要以其识别和应用为主,以填空题的形式出现,分值大约在5分。对空间几何体的形状、位置关系、数量特征、表面积和体积的命题需要加以关注。

  2.球的面积和体积:计算球的面积和体积就要求出球的半径,在具体的空间几何体中,首先要确定球心的位置,这样才能根据已知数据求出半径,除球以外的空间几何体在求体积时都离不开”高“,要注意使用线面垂直的相关定理确定高线。

  三、正弦定理和余弦定理

  1.正弦定理

  在一个三角形中,各边和它所对角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R

  2.余弦定理

  三角形中,任意一边的平方等于另外两边的平方和减去另两边及其夹角的余弦的积的两倍。

  3.例题:熊丹老师教你正弦定理做题时的注意事项

  五、常用逻辑用语:

  1、四种命题:

  ⑴原命题:若p则q;⑵逆命题:若q则p;⑶否命题:若 p则 q;⑷逆否命题:若 q则 p

  注:1、原命题与逆否命题等价;逆命题与否命题等价。判断命题真假时注意转化。

  2、注意命题的否定与否命题的区别:命题 否定形式是 ;否命题是 .命题“ 或 ”的否定是“ 且 ”;“ 且 ”的否定是“ 或 ”.

  3、逻辑联结词:

  ⑴且(and) :命题形式 p q; p q p q p q p

  ⑵或(or):命题形式 p q; 真 真 真 真 假

  ⑶非(not):命题形式 p . 真 假 假 真 假

  假 真 假 真 真

  假 假 假 假...

成人高考数学的知识点有哪些

 

  许多小伙伴会通过成人高考来提升学历,那么成人高考数学的知识点有哪些呢。以下是由出国留学网编辑为大家整理的“成人高考数学的知识点有哪些”,仅供参考,欢迎大家阅读。

  成人高考数学的知识点有哪些

  知识点1:交集、并集、补集

  1、交集:集合A与集合B的交集记作A∩B,取A、B两集合的公共元素

  2、并集:集合A与集合B的并集记作A∪B,取A、B两集合的全部元素

  3.补集:已知全集U,集合A的补集记作CuA,取U中所有不属于A的元素

  解析:集合的交集或并集主要以列举法或不等式的形式出现 知识点2:简易逻辑

  概念:在一个数学命题中,往往由条件甲和结论乙两部分构成,写成“如果甲成立,那么乙成立”。若为真命题,则甲可推出乙,记作“甲 乙”;若为假命题,则甲推不出乙,记作“甲 乙”。

  题型:判断命题甲是命题乙的什么条件,从两方面出发:

  ①充分条件看甲是否能推出乙 ②必要条件看乙是否能推出甲

  A、 若甲 乙 但 乙 甲,则甲是乙的充分必要条件(充要条件) B、若甲 乙 但 乙 甲,则甲是乙的充分不必要条件 C、若甲 乙 但 乙 甲,则甲是乙的必要不充分条件

  D、若甲 乙 但 乙 甲,则甲不是乙的充分条件也不是乙的必要条件

  知识点2:不等式的性质

  1. 不等式两边同加或减一个数,不等号方向不变 2. 不等式两边同乘或除一个正数,不等号方向不变 3. 不等式两边同乘或除一个负数,不等号方向改变(“>”变“<”)

  解析:不等式两边同加或同乘主要用于解一元一次不等式或一元二次不等式移项和合并同类项方面 知识点2:一元一次不等式

  1. 定义:只有一个未知数,并且未知数的最好次数是一次的不等式,叫一元一次不等式。

  2. 解法:移项、合并同类项(把含有未知数的移到左边,把常数项移到右边,移了之后符号要发生改变)

  3. 如:6x+8>9x-4,求x? 把x的项移到左边,把常数项移到右边,变成6x-9x>-4-8,合并同类

  项之后得-3x>-12,两边同除-3得x<4(记得改变符号)。

  知识点3:一元一次不等式组

  4. 定义:由几个一元一次不等式所组成的不等式组,叫做一元一次不等式组

  5. 解法:求出每个一元一次不等式的值,最后求这几个一元一次不等式的交集(公共部分)。

  知识点4:含有绝对值的不等式

  1. 定义:含有绝对值符号的不等式,如:|x|a型不等式及其解法。

  2. 简单绝对值不等式的解法:

  |x|>a的解集是{x|x>a或x<-a},大于取两边,大于大的小于小的。 |x|

  3. 复杂绝对值不等式的解法:

  |ax+b|>c相当于解不等式ax+b>c或ax+b<-c,解法同一元一次不等式一样。 |ax+b|

  解析:主要搞清楚取中间还是取两边,取中间是连起来的,取两边有“或” 知识点5:一元二次不等式

  1. 定义:含有一个未知数并且未知...

初一下期数学知识点有哪些

 

  数学作为初中主科之一,那么初一下期数学知识点有哪些呢。以下是由出国留学网编辑为大家整理的“初一下期数学知识点有哪些”,仅供参考,欢迎大家阅读。

  初一下期数学知识点有哪些

  1.1正数和负数

  以前学过的0以外的数前面加上负号“-”的书叫做负数。

  以前学过的0以外的数叫做正数。

  数0既不是正数也不是负数,0是正数与负数的分界。

  在同一个问题中,分别用正数和负数表示的量具有相反的意义

  1.2有理数

  1.2.1有理数

  正整数、0、负整数统称整数,正分数和负分数统称分数。

  整数和分数统称有理数。

  1.2.2数轴

  规定了原点、正方向、单位长度的直线叫做数轴。

  数轴的作用:所有的有理数都可以用数轴上的点来表达。

  注意事项:

  ⑴数轴的原点、正方向、单位长度三要素,缺一不可。

  ⑵同一根数轴,单位长度不能改变。

  一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。

  1.2.3相反数

  只有符号不同的两个数叫做互为相反数。

  数轴上表示相反数的两个点关于原点对称。

  在任意一个数前面添上“-”号,新的数就表示原数的相反数。

  1.2.4绝对值

  一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。

  一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。

  在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。

  比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数。

  ⑵两个负数,绝对值大的反而小。

  1.3有理数的加减法

  1.3.1有理数的加法

  有理数的加法法则:

  ⑴同号两数相加,取相同的符号,并把绝对值相加。

  ⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

  ⑶一个数同0相加,仍得这个数。

  两个数相加,交换加数的位置,和不变。

  加法交换律:a+b=b+a

  三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。

  加法结合律:(a+b)+c=a+(b+c)

  1.3.2有理数的减法

  有理数的减法可以转化为加法来进行。

  有理数减法法则:

  减去一个数,等于加这个数的相反数。

  a-b=a+(-b)

  1.4有理数的乘除法

  1.4.1有理数的乘法

  有理数乘法法则:

  两数相乘,同号得正,异号得负,并把绝对值相乘。

  任何数同0相乘,都得0。

  乘积是1的两个数互为倒数。

  几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。

  ...

高二上册数学知识点有哪些

 

  数学作文高中主科之一,那么高二上册数学知识点有哪些呢。以下是由出国留学网编辑为大家整理的“高二上册数学知识点有哪些”,仅供参考,欢迎大家阅读。

  高二上册数学知识点

  一、曲线与方程

  1.椭圆

  椭圆的定义是椭圆章节的基础内容,高考对本节内容的考查可能仍然将以求椭圆的方程和研究椭圆的性质为主,两种题型均有可能出现.椭圆方面的知识与向量等知识的综合考查命题趋势较强。

  2.双曲线

  标准方程的求法:双曲线标准方程最常用的两种方法是定义法和待定系数法.利用定义法求解,首先要熟悉双曲线的定义,只要知道双曲线的焦点和双曲线上的任意一点的坐标都可以运用定义法求解其标准方程;解法二是利用待定系数法求解,是求双曲线方程的根本方法之一,其思想是根据题目中的条件确定双曲线方程中的系数a,b,主要是解方程组;解法三是利用共焦点曲线系方程求解,其要点是根据题目中的一个条件写出含一个参数的共焦点的二次曲线系方程,再根据另外一个条件求出这个参数.

  3.抛物线

  1)利用已知条件求抛物线方程,一般有两种方法:待定系数法和轨迹法。

  2)韦达定理的熟练运用,可以防止运算复杂的焦点坐标,巧妙利用抛物线的性质进行解题。

  3)焦点弦的几何性质是答题中容易忽略的问题,在复杂的求解抛物线方程中,运用好这方面的知识能够少走很多弯路。

  用点差法解圆锥曲线的中点弦问题

  二、空间几何体

  1.空间几何体的考查主要以其识别和应用为主,以填空题的形式出现,分值大约在5分。对空间几何体的形状、位置关系、数量特征、表面积和体积的命题需要加以关注。

  2.球的面积和体积:计算球的面积和体积就要求出球的半径,在具体的空间几何体中,首先要确定球心的位置,这样才能根据已知数据求出半径,除球以外的空间几何体在求体积时都离不开”高“,要注意使用线面垂直的相关定理确定高线。

  三、正弦定理和余弦定理

  1.正弦定理

  在一个三角形中,各边和它所对角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R

  2.余弦定理

  三角形中,任意一边的平方等于另外两边的平方和减去另两边及其夹角的余弦的积的两倍。

  3.例题:熊丹老师教你正弦定理做题时的注意事项

  、常用逻辑用语:

  1、四种命题:

  ⑴原命题:若p则q;⑵逆命题:若q则p;⑶否命题:若 p则 q;⑷逆否命题:若 q则 p

  注:1、原命题与逆否命题等价;逆命题与否命题等价。判断命题真假时注意转化。

  2、注意命题的否定与否命题的区别:命题 否定形式是 ;否命题是 .命题“ 或 ”的否定是“ 且 ”;“ 且 ”的否定是“ 或 ”.

  3、逻辑联结词:

  ⑴且(and) :命题形式 p q; p q p q p q p

  ⑵或(or):命题形式 p q; 真 真 真 真 假

  ⑶非(not):命题形式 p . 真 假 假 真 假<...

高中数学知识点有哪些

 

  高中数学相较于初中数学难度有增无减,那么如何取得高分呢,高中数学知识点有哪些呢。以下是由出国留学网编辑为大家整理的“高中数学知识点有哪些”,仅供参考,欢迎大家阅读。

  高中数学知识点

  1.课程内容:

  必修课程由5个模块组成:

  必修1:集合、函数概念与基本初等函数(指、对、幂函数)

  必修2:立体几何初步、平面解析几何初步。

  必修3:算法初步、统计、概率。

  必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。

  必修5:解三角形、数列、不等式。

  以上是每一个高中学生所必须学习的。

  上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。

  此外,基础内容还增加了向量、算法、概率、统计等内容。

  2.重难点及考点:

  重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数

  难点:函数、圆锥曲线

  高考相关考点:

  ⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件

  ⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用

  ⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用

  ⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用

  ⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用

  ⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用

  ⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系

  ⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用

  ⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量

  ⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用

  ⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布

  ⑿导数:导数的概念、求导、导数的应用

  ⒀复数:复数的概念与运算

  拓展阅读:考试高分的小窍门

  整理思绪、内紧外松

  放松心态是应对紧张很好的方法,但是也不能做到太放松,拿随便的态度去面对正经的事情,往往会因为过分的放松,而出现不该丢分的地方却丢分的情况。

  所以要做到内紧外松,集中注意力是考试成功的保证,一定的神经亢奋和紧张,有益于积极思考。同时可以善于利用自我暗示语的强化作用。如可以暗示自己“今天精神很好”“考出好成绩是有把握的”等等。自我暗示语要简短具体和肯定、默默或小声对自己说,这样可以通过听觉、说...

高二上期数学知识点有哪些

 

  数学作为主科之一,在高考中是非常容易拉分的科目之一,那么高二数学知识点有哪些呢。以下是由出国留学网编辑为大家整理的“高二上期数学知识点有哪些”,仅供参考,欢迎大家阅读。

  高二上期数学知识点

  一、不等式的性质

  1.两个实数a与b之间的大小关系

  2.不等式的性质

  (4)(乘法单调性)

  3.绝对值不等式的性质

  (2)如果a>0,那么

  (3)|a?b|=|a|?|b|.

  (5)|a|-|b|≤|a±b|≤|a|+|b|.

  (6)|a1+a2+……+an|≤|a1|+|a2|+……+|an|.

  二、不等式的证明

  1.不等式证明的依据

  (2)不等式的性质(略)

  (3)重要不等式:①|a|≥0;a2≥0;(a-b)2≥0(a、b∈R)

  ②a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)

  2.不等式的证明方法

  (1)比较法:要证明a>b(a0(a-b<0),这种证明不等式的方法叫做比较法.

  用比较法证明不等式的步骤是:作差——变形——判断符号.

  (2)综合法:从已知条件出发,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法.

  (3)分析法:从欲证的不等式出发,逐步分析使这不等式成立的充分条件,直到所需条件已判断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法.

  证明不等式除以上三种基本方法外,还有反证法、数学归纳法等.

  三、解不等式

  1.解不等式问题的分类

  (1)解一元一次不等式.

  (2)解一元二次不等式.

  (3)可以化为一元一次或一元二次不等式的不等式.

  ①解一元高次不等式;

  ②解分式不等式;

  ③解无理不等式;

  ④解指数不等式;

  ⑤解对数不等式;

  ⑥解带绝对值的不等式;

  ⑦解不等式组.

  2.解不等式时应特别注意下列几点:

  (1)正确应用不等式的基本性质.

  (2)正确应用幂函数、指数函数和对数函数的增、减性.

  (3)注意代数式中未知数的取值范围.

  3.不等式的同解性

  (5)|f(x)|0)

  (6)|f(x)|>g(x)①与f(x)>g(x)或f(x)<-g(x)(其中g(x)≥0)同解;②与g(x)<0同解.

  (9)当a>1时,af(x)>ag(x)与f(x)>g(x)同解,当0ag(x)与f(x)

  四、《不等式》

  解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。

  高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。

  证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高...

初中二年级数学知识点有哪些

 

  初中数学相较于小学难度会更加大,步入初中二年级,数学知识点有哪些呢。以下是由出国留学网编辑为大家整理的“初中二年级数学知识点有哪些”,仅供参考,欢迎大家阅读。

  初中二年级数学知识点

  三角形

  1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.

  2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.

  3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.

  4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.

  5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.

  6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.

  7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.

  8.多边形的内角:多边形相邻两边组成的角叫做它的内角.

  9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.

  10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对

  角线.

  11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.

  12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用

  多边形覆盖平面,

  13.公式与性质:

  ⑴三角形的内角和:三角形的内角和为180°

  ⑵三角形外角的性质:

  性质1:三角形的一个外角等于和它不相邻的两个内角的和.

  性质2:三角形的一个外角大于任何一个和它不相邻的内角.

  ⑶多边形内角和公式:边形的内角和等于·180°

  ⑷多边形的外角和:多边形的外角和为360°.

  ⑸多边形对角线的条数:①从边形的一个顶点出发可以引条对角

  线,把多边形分成个三角形.②边形共有条对角线.

  全等三角形

  1.基本定义:

  ⑴全等形:能够完全重合的两个图形叫做全等形.

  ⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.

  ⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.

  ⑷对应边:全等三角形中互相重合的边叫做对应边.

  ⑸对应角:全等三角形中互相重合的角叫做对应角.

  2.基本性质:

  ⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.

  ⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.

  3.全等三角形的判定定理:

  ⑴边边边():三边对应相等的两个三角形全等.

  ⑵边角边():两边和它们的夹角对应相等的两个三角形全等.

  ⑶角边角():两角和它们的夹边对应相等的两个三角形全等.

  ⑷角角边():两角和其中一个角的对边对应相等的两个三角形全等.