出国留学网专题频道求极限的方法栏目,提供与求极限的方法相关的所有资讯,希望我们所做的能让您感到满意!
在考研数学当中,每年总会有几道角度比较刁钻的题型,其中,求极限就是之一,那么如何面对这一题型呢?小编在本文中为大家整理了2023年考研数学备考知识点内容:求极限的方法汇总,快和小编一起来看看吧!
1.极限分为一般极限,还有个数列极限
区别在于数列极 限是发散的,是一般极 限的一种。
2.解决极限的方法如下
(1)等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极 限依然存在)e的X次方-1或者(1+x)的a次方-1等价于Ax等等。全部熟记。(x趋近无穷的时候还原成无穷小)
(2)洛必达法则(大题目有时候会有暗示要你使用这个方法)
首先他的使用有严格的使用前提。必须是X趋近而不是N趋近。(所以面对数列极 限时候先要转化成求x趋近情况下的极 限,当然n趋近是x趋近的一种情况而已,是必要条件。还有一点数列极 限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用无疑是死路一条)必须是0比0,无穷大比无穷大!当然还要注意分母不能为0。
洛必达法则分为三种情况
(1)0比0无穷比无穷时候直接用
(2)0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了
(3)0的0次方,1的无穷次方,无穷的0次方
对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,ln(x)两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候ln(x)趋近于0)
3.泰勒公式
含有e^x的时候,尤其是含有正余旋的加减的时候要特变注意!e^x展开,sinx展开,cos展开,ln(1+x)展开对题目简化有很好帮助
4.面对无穷大比上无穷大形式的解决办法
取大头原则最大项除分子分母!看上去复杂处理很简单。
5.无穷小与有界函数的处理办法
面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数可能只需要知道它的范围结果就出来了!
6.夹逼定理
主要对付的是数列极 限这个主要是看见极 限中的函数是方程相除的形式,放缩和扩大。
7.等比等差数列公式应用
对付数列极 限 q绝对值符号要小于1
8.各项的拆分相加
来消掉中间的大多数 对付的还是数列极 限可以使用待定系数法来拆分化简函数。
9.求左右求极 限的方式
对付数列极 限,例如知道Xn与Xn+1的关系,已知Xn的极 限存在的情况下,Xn的极 限与Xn+1的极 限是一样的,应为极 限去掉有限项目极 限值不变化。
10-12
时间过得太快了,为了做好备考复习,下面由出国留学网小编为你精心准备了“2021考研数学高数备考冲刺:16种求极限的方法”,持续关注本站将可以持续获取更多的考试资讯!
2021考研数学高数备考冲刺:16种求极限的方法
1、极限分为一般极限,还有个数列极限
(区别在于数列极限是发散的,是一般极限的一种)。
2、解决极限的方法如下
1)等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1或者(1+x)的a次方-1等价于Ax等等。全部熟记。(x趋近无穷的时候还原成无穷小)
2)洛必达法则(大题目有时候会有暗示要你使用这个方法)
首先他的使用有严格的使用前提。必须是X趋近而不是N趋近。(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件。还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用无疑是死路一条)必须是0比0,无穷大比无穷大!当然还要注意分母不能为0。
洛必达法则分为三种情况
1)0比0无穷比无穷时候直接用
2)0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了
3)0的0次方,1的无穷次方,无穷的0次方
对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,ln(x)两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候ln(x)趋近于0)
3、泰勒公式
(含有e^x的时候,尤其是含有正余旋的加减的时候要特变注意!)e^x展开,sinx展开,cos展开,ln(1+x)展开对题目简化有很好帮助
4、面对无穷大比上无穷大形式的解决办法
取大头原则最大项除分子分母!看上去复杂处理很简单。
5、无穷小与有界函数的处理办法
面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数可能只需要知道它的范围结果就出来了!
6、夹逼定理
(主要对付的是数列极限)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。
7、等比等差数列公式应用
(对付数列极限)(q绝对值符号要小于1)
8、各项的拆分相加
(来消掉中间的大多数)(对付的还是数列极限)可以使用待定系数法来拆分化简函数。
9、求左右求极限的方式
(对付...
07-07
2021考研数学备考工作不知道小伙伴们做好了没有,下面由出国留学网小编为你精心准备了“2021考研数学中有哪些求极限的方法呢?”,持续关注本站将可以持续获取更多的考试资讯!
2021考研数学中有哪些求极限的方法呢?
1、极限分为一般极限,还有个数列极限
(区别在于数列极限是发散的,是一般极限的一种)。
2、解决极限的方法如下
1)等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1或者(1+x)的a次方-1等价于Ax等等。全部熟记。(x趋近无穷的时候还原成无穷小)
2)洛必达法则(大题目有时候会有暗示要你使用这个方法)
首先他的使用有严格的使用前提。必须是X趋近而不是N趋近。(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件。还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用无疑是死路一条)必须是0比0,无穷大比无穷大!当然还要注意分母不能为0。
洛必达法则分为三种情况
1)0比0无穷比无穷时候直接用
2)0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了
3)0的0次方,1的无穷次方,无穷的0次方
对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,ln(x)两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候ln(x)趋近于0)
3、泰勒公式
(含有e^x的时候,尤其是含有正余旋的加减的时候要特变注意!)e^x展开,sinx展开,cos展开,ln(1+x)展开对题目简化有很好帮助
4、面对无穷大比上无穷大形式的解决办法
取大头原则最大项除分子分母!看上去复杂处理很简单。
5、无穷小与有界函数的处理办法
面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数可能只需要知道它的范围结果就出来了!
6、夹逼定理
(主要对付的是数列极限)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。
7、等比等差数列公式应用
(对付数列极限)(q绝对值符号要小于1)
8、各项的拆分相加
(来消掉中间的大多数)(对付的还是数列极限)可以使用待定系数法来拆分化简函数。
9、求左右求极限的方式
(对付数列极限)例如知道Xn与Xn+1的...
出国留学网考研数学频道为大家提供2015考研数学考前复习:16种求极限的方法,大家可以参考一下,并把它运用的平时的考试中去!
2015考研数学考前复习:16种求极限的方法
各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面:首先对极限的总结如下:极限的保号性很重要,就是说在一定区间内函数的正负与极限一致。极限分为一般极限,还有个数列极限,(区别在于数列极限是发散的,是一般极限的一种)。
解决极限的方法如下:
1、等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用,前提是必须证明拆分后极限依然存在,e的X次方-1或者(1+x)的a次方-1等价于Ax等等。全部熟记(x趋近无穷的时候还原成无穷小)。
2、洛必达法则(大题目有时候会有暗示要你使用这个方法)。首先他的使用有严格的使用前提!必须是X趋近而不是N趋近!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的,不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用,无疑于找死!!)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。洛必达法则分为3种情况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成第一种的形式了;0的0次方,1的无穷次方,无穷的0次方。对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候,LNX趋近于0)。
3、泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特变注意!)E的x展开sina,展开cosa,展开ln1+x,对题目简化有很好帮助。
4、面对无穷大比上无穷大形式的解决办法,取大头原则最大项除分子分母!!!看上去复杂,处理很简单!
5、无穷小于有界函数的处理办法,面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数,可能只需要知道它的范围结果就出来了!
6、夹逼定理(主要对付的是数列极限!)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。
7、等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1)。
8、各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限)可以使用待定系数法来拆分化简函数。
9、求左右极限的方式(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,xn的极限与xn+1的极限时一样的,因为极限去掉有限项目极限值不变化。
10、两个重要极限的应用。这两个很重要!对第一个而言是X趋近0时候的sinx与x比值。第2个就如果x趋近无穷大,无穷小都有对有对应的形式(第2个实际上是用于函数是1的无穷的形式)(当底数是1的时候要特别注意可能是用地两个重要极限)
11、还有...
求极限的方法推荐访问