出国留学网行政职业能力测试数量关系

出国留学网专题频道行政职业能力测试数量关系栏目,提供与行政职业能力测试数量关系相关的所有资讯,希望我们所做的能让您感到满意!

数学运算习题精解(63)

 

  【例题】冷饮店规定一定数量的汽水空瓶可换原装汽水1瓶,旅游团110个旅客集中到冷饮店每人购买了1瓶汽水,他们每喝完一定数量的汽水就用空瓶去换1瓶原装汽水,这样他们一共喝了125瓶汽水,则冷饮店规定几个空瓶换1瓶原装汽水?
A.8 B.9 C.10 D.11


【例题】一条公路旁有A、B、C、D、E5个货站。每两个货站之间的距离相等,现要将这5个货站集中到一个货站,已知A、B、C、D、E的货物分别为70吨、30吨、60吨、50吨、40吨,问应集中到哪一个货站可使运费最省?
A.A B.B C.C D.E


【例题】毛毛骑在牛背上过河,他共有甲、乙、丙、丁4头牛,甲过河要2分钟,乙过河要3分钟,丙过河要4分钟,丁过河要5分钟。毛毛每次只能赶2头牛过河,要把4头牛都赶到对岸去,最少要多少分钟?
A.16 B.17 C.18 D.19


【例题】数学竞赛,共25道题目,评分标准是每做对一题得5分,做错一题倒扣3分,没做为0分,某学生得了94分,则他做错了多少道题?
A.2 B.3 C.4 D.5


【例题】小王的爷爷比奶奶大2岁,爸爸比妈妈大2岁,全家五口人共200岁。已知爷爷年龄是小王的5倍,爸爸年龄在4年前是小王的4倍,则小王的爸爸今年多少岁?
A.40 B.36 C.32 D.44



【解析】C。110人多喝了125-110=15瓶汽水,则相当于110÷15=7……57个空瓶换一瓶汽水(不含瓶),故冷饮店规定7+1=8个空瓶换1瓶原装汽水。


【解析】C。五个货站物资总数的一半为(70+30+60+50+40)÷2=125吨,因为A、E两站都小于125吨,所以都往中间靠一站,此时,B站:30+70=100吨,D站:50+40=90吨,B、D两站仍小于125吨,再往中间靠一站,集中到C站。因此集中到C站可使运费最省。


【解析】A。若要时间最短,则一定要让耗时最长的两头牛同时过河。先骑甲、乙过河,骑甲返回,共用5分钟;再骑丙、丁过河,骑乙返回,共用8分钟;最后再骑甲、乙过河,用3分钟,共用时5+8+3=16分钟。


【解析】A。如果全做对,应得125分。现在少得了125-94=31分,答错一道减少5+3=8分,不答一道减少5分,8×2+5×3=31分,故他做错了2道题。


【解析】B。假设奶奶和爷爷一样大,妈妈和爸爸一样大,全家年龄和是200+4=204岁,这样爷爷、奶奶的年龄和是10个小王的年龄。而爸爸的年龄是4年前小王的4倍多4岁,换句话说,就是比现在小王年龄的4倍少4×4-4=12岁,妈妈也比现在小王的年龄的4倍少12岁,这样现在全家人的年龄和204+12+12=228岁,则小王的年龄为228÷(5×2+4×2+1)=12岁,爸爸的年龄为(12-4)×4+4=36岁。

...

数字推理习题精解(63)

 

  【例题】9,7,2,5,(  )
A、-7  B、-2  C、-3  D、3


【例题】5.8,4.7,3.5,(  )
A、2.1  B、2.2  C、2.3  D、3.1


【例题】79,21,58,-37,(  )
A、75  B、95  C、-48  D、-67


【例题】31,72,103,175,(  )
A、215  B、196  C、278  D、239


【例题】1,10,11,21,32,(  )
A、43  B、42  C、53  D、45

  【解析】前数减后数等于第三数。故选C。


【解析】相邻两数之差构成等差数列。故选B。


【解析】相邻两数之差构成等差数列。故选B。


【解析】前两数之和等于第三数,故选C。


【解析】前两数之和等于第三数,故选C。

数学运算习题精解(61)

 

  【例题】甲每5天进城一次,乙每9天进城一次,丙每12天进城一次,某天三人在城里相遇,那么下次相遇至少要:
A.60天 B.180天 C.540天 D.1620天


【例题】三位采购员定期去某商店,小王每隔9天去一次,大刘每隔11天去一次,老杨每隔7天去一次,三人星期二第一次在商店相会,下次相会是星期几?
A.星期一 B.星期二 C.星期三 D.星期四


【例题】赛马场的跑马道600米长,现有甲、乙、丙三匹马,甲1分钟跑2圈,乙1分钟跑3圈,丙1分钟跑4圈。如果这三匹马并排在起跑线上,同时往一个方向跑,请问经过几分钟,这三匹马自出发后第一次并排在起跑线上?( )
A.1/2 B.1 C.6 D.12


【例题】国际象棋的皇后可以沿横线、竖线、斜线走,为了控制一个4x4的棋盘至少要放几个皇后?
A.1    B.2    C.3    D.4

  
【例题】有砖26块,兄弟二人争着去挑。弟弟抢在前面,刚摆好砖,哥哥赶到了。哥哥看弟弟挑的太多,就抢过一半。弟弟不肯,又从哥哥那儿抢走一半。哥哥不服,弟弟只好给哥哥5块,这时哥哥比弟弟多挑2块。问最初弟弟准备挑多少块?( )
A.15 B.20 C.16 D.18


【解析】下次相遇要多少天,也即求5,9,12的最小公倍数,可用代入法,也可直接求。显然5,9,12的最小公倍数为5×3×3×4=180。所以,答案为B。


【解析】此题乍看上去是求9,11,7的最小公倍数的问题,但这里有一个关键词,即“每隔”,“每隔9天”也即“每10天”,所以此题实际上是求10,12,8的最小公倍数。10,12,8的最小公倍数为5×2×2×3×2=120。120÷7=17余1,所以,下一次相会则是在星期三,选择C。


【解析】此题是一道有迷惑性的题,“1分钟跑2圈”和“2分钟跑1圈”是不同概念,不要等同于去求最小公倍数的题。显然1分钟之后,无论甲、乙、丙跑几圈都回到了起跑线上。所以,答案为B。


【解析】B。2×2棋盘,1个皇后放在任意一格均可控制2×2=4格;3×3棋盘,1个皇后放在中心格里即可控制3×3=9格;4×4棋盘,中心在交点上,1个皇后不能控制两条对角线,还需要1个皇后放在拐角处控制边上的格。所以至少要放2个皇后。所以应选择B。


【解析】C。先看最后兄弟俩各挑几块:哥哥比弟弟多挑2块,这是一个和差问题,哥哥挑的块数:(26+2)÷2=14块,弟弟=26-14=12块;然后再还原:哥哥还给弟弟5块:哥哥=14-5=9块,弟弟=12+5=17块;弟弟把抢走的一半还给哥哥:哥哥=9+9=18块,弟弟=17-9=8块;哥哥把抢走的一半还给弟弟:弟弟原来是8+8=16块。所以应选择C。

...

数字推理习题精解(61)

 

  【例题】5,6,10,9,15,12,(),()
A、20,16  B、30,17  C、20,15  D、15,20


【例题】1/5,1/10,1/17,1/26,()
A、1/54  B、1/37  C、1/49  D、1/53


【例题】9,81,729,()
A、6561  B、5661  C、7651  D、2351


【例题】78,61,46,33,()
A、21  B、22  C、27  D、25


【例题】2,3,6,18,()
A、20  B、36  C、72  D、108


【解析】是隔数数列,故选C。


【解析】分母为等差数列,故选B。


【解析】公比为9的等比数列,故选A。


【解析】相邻两数之差为17、15、13、11,故选B。


【解析】从第三数开始,后数是前两数的乘积。故选D。

数字推理习题精解(60)

 

  【例题】0,14,78,252,()。
A. 510    B. 554    C. 620    D. 678

  
【例题】1/3,1/4,1/6,1/12,1/36,()。
A. 1/72   B. 1/144   C. 1/216   D. 1/432

  
【例题】-1,3,4,0,5,3,10,()。
A. 6     B. 7      C. 9      D. 14

  
【例题】8,14,22,36,()。
A. 54    B. 56     C. 58     D. 60

  
【例题】1,6,15,28,()。
A. 36    B. 39     C. 42     D. 45

  【解析】C。14-1=0,24-2=14,34-3=78,44-4=252,54-5=620,故本题正确答案为C。

  【解析】1/3×1/4×2=1/6,1/4×1/6×2=1/12,1/6×1/12×2=1/36,1/12×1/36×2=1/216,故本题正确答案为C。


【解析】A。该数列为数字分段组合数列,每两项为一组,其和构成等比数列。由此判断,空缺处应为16-10=6,所以答案选A项。


【解析】C。前两项之和等于第三项,故空缺项=22+36=58,故本题正确答案为C。


【解析】D。该数列的公式为an=2n2-n,故空缺处应为2×52-5=45,故本题正确答案为D。

数学运算习题精解(60)

 

  【例题】某企业去年的销售收入为1000万元,成本分生产成本500万元和广告费200万元两个部分。若年利润必须按P%纳税,年广告费超出年销售收入2%的部分也必须按P%纳税,其它不纳税,且已知该企业去年共纳税120万元,则税率P%为
A.40% B.25% C.12% D.10% (2004年江苏真题)


【例题】甲乙两名工人8小时共加736个零件,甲加工的速度比乙加工的速度快30%,问乙每小时加工多少个零件?
A.30个 B.35个 C.40个 D.45个


【例题】已知甲的12%为13,乙的13%为14,丙的14%为15,丁的15%为16,则甲、乙、丙、丁4个数中最大的数是:
A.甲 B.乙 C.丙 D.丁


【例题】某储户于1999年1月1 日存人银行60000元,年利率为2.00%,存款到期日即2000年1月1 日将存款全部取出,国家规定凡1999年11月1日后孳生的利息收入应缴纳利息税,税率为20%,则该储户实际提取本金合计为
A.61 200元 B.61 160元 C.61 000元 D.60 040元


【解析】选用方程法。根据题意列式如下:
(1000-500-200)×P%+(200-1000×2%)×P%=120
即 480×P%=120
P%=25%
所以,答案为B。


【解析】选用方程法。设乙每小时加工X个零件,则甲每小时加工1.3X个零件,并可列方程如下:
(1+1.3X)×8=736
X=40
所以,选择C。


【解析】显然甲=13/12%;乙=14/13%;丙=15/14%;丁=16/15%,显然最大与最小就在甲、乙之间,所以比较甲和乙的大小即可,甲/乙=13/12%/16/15%>1,
所以,甲>乙>丙>丁,选择A。


【解析】如不考虑利息税,则1999年1月1 日存款到期日即2000年1月1可得利息为60000×2%=1200,也即100元/月,但实际上从1999年11月1日后要收20%利息税,也即只有2个月的利息收入要交税,税额=200×20%=40元
所以,提取总额为60000+1200-40=61160,正确答案为B。

...

数学运算习题精解(59)

 

  【例题】1998年,甲的年龄是乙的年龄的4倍。2002年,甲的年龄是乙的年龄的3倍。问甲、乙二人2000年的年龄分别是多少岁?
A.34岁,12岁   B.32岁,8岁   C.36岁,12岁   D.34岁,10岁


【例题】养鱼塘里养了一批鱼,第一次捕上来200尾,做好标记后放回鱼塘,数日后再捕上100尾,发现有标记的鱼为5尾,问鱼塘里大约有多少尾鱼?
A.200 B.4000 C.5000 D.6000


【例题】2001年,某公司所销售的计算机台数比上一年度上升了20%,而每台的价格比上一年度下降了20%。如果2001年该公司的计算机销售额为3000万元,那么2000年的计算机销售额大约是多少?
A.2900万元 B.3000万元 C.3100万元 D.3300万元


【例题】生产出来的一批衬衫中大号和小号各占一半。其中25%是白色的,75%是蓝色的。如果这批衬衫总共有100件,其中大号白色衬衫有10件,问小号蓝色衬衫有多少件?
A.15 B.25 C.35 D.40


【例题】某企业发奖金是根据利润提成的,利润低于或等于10万元时可提成10%;低于或等于20万元时,高于10万元的部分按7.5%提成;高于20万元时,高于20万元的部分按5%提成。当利润为40万元时,应发放奖金多少万元?
A.2 B.2.75 C.3 D.4.5

  【解析】C。抓住年龄问题的关键即年龄差,1998年甲的年龄是乙的年龄的4倍,则甲乙的年龄差为3倍乙的年龄,2002年,甲的年龄是乙的年龄的3倍,此时甲乙的年龄差为2倍乙的年龄,根据年龄差不变可得
3×1998年乙的年龄=2×2002年乙的年龄
3×1998年乙的年龄=2×(1998年乙的年龄+4)
1998年乙的年龄=4岁
则2000年乙的年龄为10岁。


【解析】方程法:可设鱼塘有X尾鱼,则可列方程,100/5=X/200,解得X=4000,选择B。


【解析】方程法:可设2000年时,销售的计算机台数为X,每台的价格为Y,显然由题意可知,2001年的计算机的销售额=X(1+20%)Y(1-20%),也即3000万=0.96XY,显然XY≈3100。答案为C。


【解析】这是一道涉及容斥关系的比例问题。
根据已知 大号白=10件,因为大号共50件,所以,大号蓝=40件;
大号蓝=40件,因为蓝色共75件,所以,小号蓝=35件;
此题可以用另一思路进行解析(多进行这样的思维训练,有助于提升解题能力)
大号白=10件,因为白色共25件,所以,小号白=15件;
小号白=15件,因为小号共50件,所以,小号蓝=35件;
所以,答案为C。


【解析】这是一个种需要读懂内容的题型。根据要求进行列式即可。
奖金应为 10×10%+(20-10)×7.5%+(40-20)×5%=...

数学运算习题精解(58)

 

  【例题】李明家在山上,爷爷家在山下,李明从家出发一每分钟90米的速度走了10分钟到了爷爷家。回来时走了15分钟到家,则李 是多少?( )
A.72米/分   B.80米/分   C.84米/分   D90米/分


【例题】某校有有100个学生参加数学竞赛,平均得63分,其中男生平均60分,女生平均70分,则男生比女生多多少人?( )
A.30   B.32   C.40   D.45


【例题】学校学生排成一个方阵,最外层的人数是60人,问这个方阵共有学生多少人?
A.256人 B.250人 C.225人 D.196人


【例题】甲对乙说:当我的岁数是你现在岁数时,你才4岁。乙对甲说:当我的岁数到你现在的岁数时,你将有67岁,甲乙现在各有:
A.45岁,26岁   B.46岁,25岁   C.47岁,24岁   D.48岁,23岁


【例题】爸爸、哥哥、妹妹现在的年龄和是64岁。当爸爸的年龄是哥哥的3倍时,妹妹是9岁;当哥哥的年龄是妹妹的2倍时,爸爸34岁。现在爸爸的年龄是多少岁?
A.34   B.39   C.40   D.42


【解析】A。李明往返的总路程是90×10×2=1800(米),总时间为10+15=25 均速度为1800÷25=72米/分。


【解析】C。总得分为63×100=6300,假设女生也是平均60分,那么100个学生共的6000分,这样就比实得的总分少300分。这是女生平均每人比男生高10分,所以这少的300分是由于每个女生少算了10分造成的,可见女生有300÷10=30人,男生有100-30=70人,故男生比女生多70-30=40人。


【解析】正确答案为A。方阵问题的核心是求最外层每边人数。
根据四周人数和每边人数的关系可以知:每边人数=四周人数÷4+1,可以求出方阵最外层每边人数,那么整个方阵队列的总人数就可以求了。
方阵最外层每边人数:60÷4+1=16(人) 整个方阵共有学生人数:16×16=256(人)。


【解析】B。甲、乙二人的年龄差为(67-4)÷3=21岁,故今年甲为67-21=46岁,乙的年龄为45-21=25岁。


【解析】C。解法一:用代入法逐项代入验证。解法二,利用“年龄差”是不变的,列方程求解。设爸爸、哥哥和妹妹的现在年龄分别为:x、y和z。那么可得下列三元一次方程:x+y+z=64;x-(z-9)=3[y-(z-9)];y-(x-34)=2[z-(x-34)]。可求得x=40。

...

数字推理习题精解(59)

 

  【例题】8,15,29,57,()
A.112   B.114  C.113  D.116


【例题】2,3,6,18,108,()
A.216  B.1080  C.2160  D.1944


【例题】1/5,2/9,3/13,4/17,()
A.5/19  B.6/21  C.5/21  D.6/19


【例题】


【例题】12,23,35,48,62,()
A.77  B.80  C.85  D.75

  【解析】C。15=2×8-1,29=2×15-1,57=2×29-1,所以后一项为2×57=113。


【解析】D。从第三项开始,后一项为前两项的积。


【解析】C。分子和分母都呈等差数列。


【解析】A。原题各项可变为
故正确答案应为A。


【解析】A。

数学运算习题精解(57)

 

  【例题】由于天气逐渐变冷,牧场上的草每天一均匀的速度减少。经计算,牧场上的草可供20头牛吃5天,或供16头牛吃6天。那么可供11头牛吃几天?( )
A.12   B.10   C.8   D.6


【例题】有一片牧场,24头牛6天可以将草吃完;21头牛8天可以吃完,要使牧草永远吃不完,至多可以放牧几头牛?( )
A.8   B.10   C.12   D.14


【例题】有一个水池,池底有一个打开的出水口。用5台抽水机20小时可将水抽完,用8台抽水机15小时可将水抽完。如果仅靠出水口出水,那么多长时间将水漏完?( )
A.25   B.30   C.40   D.45


【例题】某商品按20%的利润定价,又按八折出售,结果亏损4元钱。这件商品的成本是多少元?
A.80   B.100  C.120   D.150


【例题】某商品按定价出售,每个可以获得45元的利润,现在按定价的八五折出售8个,按定价每个减价35元出售12个,所能获得的利润一样。这种商品每个定价多少元?( )
A.100   B.120   C.180   D.200

  【解析】C。设每头牛每天吃1份草,则牧场上的草每天减少(20×5-16×6)÷(6-5)=4份草,原来牧场上有20×5+5×4=120份草,故可供11头牛吃120÷(11+4)=8天。

  【解析】C。设每头牛每天吃1份草,则牧场上的草每天生长出(21×8-24×6)÷(8-6)=12份,如果放牧12头牛正好可吃完每天长出的草,故至多可以放牧12头牛。

  【解析】D。出水口每小时漏水为(8×15-5×20)÷(20-15)=4份水,原来有水8×15+4×15=180份,故需要180÷4=45小时漏完。

  【解析】B。现在的价格为(1+20%)×80%=96%,故成本为4÷(1-96%)=100元。


【解析】D。每个减价35元出售可获得利润(45-35)×12=120元,则如按八五折出售的话,每件商品可获得利润120÷8=15元,少获得45-15=30元,故每个定价为30÷(1-85%)=200元。

...