出国留学网

目录

中考奥数:求函数解析式的几种常用方法

【 liuxue86.com - 中考数学 】

  中考奥数:求函数解析式的几种常用方法


  [题型一]配凑法

  例1.已知f(■+1)=x+2■,求f(x)。

  分析:函数的解析式y=f(x)是自变量x确定y值的关系式,其实质是对应法则f:x→y,因此解决这类问题的关键是弄清对“x”而言,“y”是怎样的规律。

  解:∵f(■+1)=x+2■=(■+1)2-1

  (■+11)

  ∴f(x)=x2-1(x1)

  小结:此种解法为配凑法,通过观察、分析,将右端“x+2■”变为接受对象“■+1”的表达式,即变为含(■+1)的表达式,这种解法对变形能力、观察能力有一定的要求。

  [题型二]换元法

  例2.已知f(1-cosx)=sin2x,求f(x)。

  分析:视1-cosx为一整体,应用数学的整体化思想,换元即得。

  解:设t=1-cosx

  ∵-1cosx1 ∴01-cosx2 即0t2

  ∴cosx=1-t

  ∴sin2x=1-cos2x=1-(1-t)2=-t2+2t

  ∴f(t)=-t2+2t(0t2)

  即f(x)=-x2+2x(0x2)

  小结:①已知f[g(x)]是关于x的函数,即f[g(x)]=F(x),求f(x)的解析式,通常令g(x)=t,由此能解出x=(t),将x=(t)代入f[g(x)]=F(x)中,求得f(t)的解析式,再用x替换t,便得f(x)的解析式。

  注意:换元后要确定新元t的取值范围。

  ②换元法就是通过引入一个或几个新的变量来替换原来的某些变量的解题方法,它的基本功能是:化难为易、化繁为简,以快速实现未知向已知的转换,从而达到顺利解题的目的。常见的换元法是多种多样的,如局部换元、整体换元、三角换元、分母换元等,它的应用极为广泛。

  [题型三]待定系数法

  例3.设二次函数f(x)满足f(x+2)=f(2-x),且f(x)=0的两实根平方和为10,图象过点(0,3),求f(x)的解析式。

  分析:由于f(x)是二次函数,其解析式的基本结构已定,可用待定系数法处理。

  解:设f(x)=ax2+bx+c(a≠0)

  由f(x+2)=f(2-x)可知,该函数图象关于直线x=2对称

  ∴-■=2,即b=-4a……①

  又图象过点(0,3) ∴c=3……②

  由方程f(x)=0的两实根平方和为10,得(-■)2-■=0

  即b2-2ac=10a2……③

  由①②③解得a=1,b=-4,c=3

  ∴f(x)=x2-4x+3

  小结:我们只要明确所求函数解析式的类型,便可设出其函数解析式,设法求出其系数即可得到结果。类似的已知f(x)为一次函数时,可设f(x)=ax+b(a≠0);f(x)为反比例函数时,可设f(x)=■(k≠0);f(x)为二次函数时,根据条件可设

  ①一般式:f(x)=ax2+bx+c(a≠0)

  ②顶点式:f(x)=a(x-h)2+k(a≠0)

  ③双根式:f(x)=a(x-x1)(x-x2)(a≠0)

  [题型四]消元法

  例4.已知函数y=f(x)满足af(x)+bf(■)=cx,其中a、b、c都是非零常数,a≠±b,求函数y=f(x)的解析式。

  分析:求函数y=f(x)的解析式,由已知条件知必须消去f(■),不难想到再寻找一个方程,构成方程组,消去f(■)得f(x)。如何构成呢?充分利用x和■的倒数关系,用■去替换已知中的x便可得到另一个方程。

  解:在已知等式中,将x换成■,得af(■)+bf(x)=■,把它与原条件式联立,得af(x)+bf(■)=cx……①af(■)+bf(x)=■……②

  ①×a-②×b得(a2-b2)f(x)=c(ax-■)

  ∵a≠±b ∴f(x)=■(ax-■)(x≠0)

  习题:

  问1.已知:方程:x2+ax+a+1=0的两根满足一个条件:一根大于k,一根小于k(k是实数),求a的取值范围。(此题一种方法是图象法,还有一种方法,能告诉这两种方法吗?)

  答:方法一:∵f(x)=x2+ax+a+1图象为开口向上的抛物线,因此只需f(k)<0即可。

  ∴k2+ak+a+1<0,即a(k+1)<-k2-1

  ∴当k>-1时,a<■;

  ;当k<-1时,a>■;当k=-1时,a无解。

  方法二:(x1-k)(x2-k)<0△>0

  只需(x1-k)(x2-k)<0即可,x1x2-k(x1+x2)+k2<0

  即a+1+ka+k2<0,以下同方法一。

  问2.为什么求解时只需求(x1-k)(x2-k)<0,而不需再求根的判别式是否大于0?

  答:法二不需要验判别式,原因可以举个简单例子说明,如:若研究x2+ax+b=0两根满足:一个根大于0,一个根小于0,只需x1x2<0,即:b<0,此时就可以保证△=a2-4b>0恒成立。

  以上由出国留学网中考频道为您精心提供,更多

中考数学复习资料大全尽在本网站 ,希望对您的中考数学复习有所帮助。

  推荐阅读:

  2015中考数学模拟试题及答案

  2015中考数学试题(一)

  

2015中考数学试卷及答案(二)

  2015中考数学试题及答案(三)

  2015中考数学试卷及答案(四)


中考政策 中考状元 中考饮食 中考备考辅导 中考复习资料

  想了解更多中考数学网的资讯,请访问: 中考数学

本文来源:https://www.liuxue86.com/a/2414157.html
延伸阅读
中考数学要想拿高分离不开平时的刻苦,以及大量的试题训练,当然也少不了一些备考的技巧。那究竟要如何准备中考数学备考呢?下面就跟随出国留学网小编一起来看一下吧!一、基本知识点要熟记做数
2020-07-21
中考数学备考的方法有哪些?下面由出国留学网小编为你精心准备了“2020中考数学高效复习计策”,持续关注本站将可以持续获取更多的考试资讯!2020中考数学高效复习计策一、中考数学复习
2020-07-10
中考备考的方法有哪些?下面由出国留学网小编为你精心准备了“2020中考备考:数学复习的全方位技巧”,持续关注本站将可以持续获取更多的考试资讯!2020中考备考:数学复习的全方位技巧
2020-06-16
中考备考的方法有哪些?下面由出国留学网小编为你精心准备了“2020中考数学:题型的综合练习技巧”,持续关注本站将可以持续获取更多的考试资讯!2020中考数学:题型的综合练习技巧一、
2020-06-16
中考备考的方法有哪些?下面由出国留学网小编为你精心准备了“2020中考数学:基本知识的复习指导”,持续关注本站将可以持续获取更多的考试资讯!2020中考数学:基本知识的复习指导一、
2020-06-16
小编为您带来《2019年中考数学:检验答案的常用方法》,我们一起来看看吧!希望给您带来帮助!更多精彩内容尽在本网,请关注!2019年中考数学:检验答案的常用方法检验答案不仅能纠正错
2018-11-02
小编精心为您收集整理了《2019中考数学复习:数与式思维导图》,希望给您带来帮助!更多精彩内容尽在本站,请持续关注。2019中考数学复习:数与式思维导图推荐阅读:2019中考数学复
2018-10-27
《2019年中考数学知识点:函数的性质》由本网站小编整理而出!希望给您带来帮助,更多相关资讯敬请关注本网站更新!祝您前程似锦!2019年中考数学知识点:函数的性质一次函数一、定义与
2018-11-06
要参加考试的同学们,小编为大家提供“2019中考数学复习:函数思维导图”供您参考,本网站将实时更新更多相关资讯,请不要错过。感谢大家浏览本页面,更多资讯请关注我们网站的更新。201
2018-10-27
中考数学频道为大家提供学好中考数学的7种方法,1.主动学习,2.主动思考,3.善于总结规律,4.拓宽解题思路,5.必须要有错题本,6.“1*5”学习法,7.独立完成作业。赶紧试试吧
2018-11-15